People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fernandes, Aa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2021Fatigue performance prediction of S235 base steel plates in the riveted connectionscitations
- 2020Fatigue behaviour of bolted joints for rack structurescitations
- 2020Fatigue behavior of cold roll-formed rail profiles for rack structures
- 2019Influence of fillet end geometry on fatigue behaviour of welded jointscitations
- 2018Fatigue analysis of a railway bridge based on fracture mechanics and local modelling of riveted connectionscitations
- 2017ULTRA-LOW-CYCLE FATIGUE BEHAVIOR OF FULL-SCALE STRAIGHT PIPES UNDER ALTERNATING BENDINGcitations
- 2017Strain-based approach for fatigue crack propagation simulation of the 6061-T651 aluminium alloycitations
- 2017Combined analytical-numerical methodologies for the evaluation of mixed-mode (I plus II) fatigue crack growth rates in structural steelscitations
- 2016Monotonic, Low-Cycle Fatigue, and Ultralow-Cycle Fatigue Behaviors of the X52, X60, and X65 Piping Steel Gradescitations
- 2016A new ultra-low cycle fatigue model applied to the X60 piping steelcitations
- 2015Study of formability of sandwich shells with metal foam cores based on punch penetration test
- 2015ULTRA-LOW-CYCLE FATIGUE BEHAVIOUR OF FULL-SCALE ELBOWS
- 2014Study on the forming of sandwich shells with closed-cell foam corescitations
- 2014COMPARISON OF THE MONOTONIC, LOW-CYCLE AND ULTRA-LOW-CYCLE FATIGUE BEHAVIOURS OF THE X52, X60 AND X65 PIPING STEEL GRADEScitations
- 2013STUDY OF FORMABILITY OF SANDWICH SHELLS WITH METAL FOAM COREScitations
- 2012Numerical Modelling and Experimental Study of Sandwich Shells with Metal Foam Corescitations
- 2012Numerical and experimental study of the bulge test of sandwich shells with metal foam cores
- 2012RETROFITTING OF OLD RIVETED PORTUGUESE BRIDGES. PAST AND CURRENT REMNANT LIFE ASSESSMENT RESEARCH
- 2011Modeling of Sandwich Sheets with Metallic Foamcitations
- 2011Strain-life and crack propagation fatigue data from several Portuguese old metallic riveted bridgescitations
- 2011FEM analysis of Sandwich Shells with Metallic Foam Corescitations
- 2011Analysis of Sandwich Shells with Metallic Foam Cores based on the Uniaxial Tensile Testcitations
- 2011NUMERICAL AND EXPERIMENTAL STUDY OF SANDWICH PLATES WITH METALLIC FOAM CORES
- 2010STUDY OF SANDWICH SHELLS WITH METALLIC FOAM COREScitations
- 2010Correlation analysis of MAC robotized welding parameters by the Taguchi technique
- 2008Analysis of Fatigue Damage under Block Loading in a Low Carbon Steelcitations
- 2007Fatigue assessment of welded tubular steel structures details by using FEM
- 2007Influence of the submerged arc welding in the mechanical behaviour of the P355NL1 steel - part II: analysis of the low/high cycle fatigue behaviourscitations
- 2006Low and high cycle fatigue and cyclic elasto-plastic behavior of the P355NL1 steelcitations
- 2006Fatigue behaviour of riveted steel lap jointscitations
- 2006A discussion on the performance of continuum plasticity models for fatigue lifetime assessment based on the local strain approach
- 2005Finite element modeling of fatigue damage using a continuum damage mechanics approachcitations
- 2004Finite element modelling of fatigue damage using a continuum damage mechanics approachcitations
- 2001Fracture analysis of forks of a heavy duty lift truckcitations
Places of action
Organizations | Location | People |
---|
document
COMPARISON OF THE MONOTONIC, LOW-CYCLE AND ULTRA-LOW-CYCLE FATIGUE BEHAVIOURS OF THE X52, X60 AND X65 PIPING STEEL GRADES
Abstract
Seismic actions, settlements and landslides, accidental loads, fluctuations in the layers of permafrost and pipelines reeling induce large plastic deformations, with widespread yielding in the pipelines which may lead to failure, either due to monotonic loading or due to cyclic plastic strain fluctuations with high amplitude and short duration (N-f<similar to 100 cycles). The damage mechanisms from the high intensity cyclic loading show distinct mechanisms from the monotonic and low-cycle fatigue (LCF) (similar to 100<N-f<similar to 10000cycles). This fatigue domain is often called ultra-low-cycle fatigue (ULCF) or extreme-low-cycle fatigue (ELCF), in order to distinguish it from LCF. Despite of monotonic ductile fracture and LCF have been subjected to significant research efforts and a satisfactory understanding of these damaging phenomena has been already established, ULCF regime is not sufficiently investigated nor understood. Consequently, further advances should be done since the data available in literature is scarce for this fatigue regime. In addition, the performance of ULCF tests is very challenging and there is no specific help from standards available in literature. In this work, the performance of X52, X60 and X65 API steel grades under monotonic, LCF and ULCF loading conditions are investigated. An experimental program was carried out to derive monotonic, LCF and ULCF data for three piping steel grades. Typical smooth geometries are susceptive to instability under ULCF tests. To overcome or minimize this shortcoming anti-buckling devices may be used in the ULCF tests. The use of notched specimens facilitates the deformation localization and therefore contributes to overcome the instability problems. However, the non-unifoiui stress/strain states raise difficulties concerning the analysis of the experimental data, requiring the use of multiaxial stress/strain parameters. Optical methods and non-linear finite element models were used to assess the strain and stress histories at critical locations, which are used to assess some damage models.