People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nikbin, Kamran M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2014Evaluation of fracture mechanics parameters for a range of weldment geometries with different mismatch ratioscitations
- 2014The effect of discontinuous crack in creep crack growth tests
- 2014Quantification and prediction of residual stresses in creep crack growth specimenscitations
- 2014Plastic pre-compression and creep damage effects on the fracture toughness behaviour of Type 316H stainless steelcitations
- 2013Influence of prior deformation on creep crack growth behaviour of 316H austenitic steels
Places of action
Organizations | Location | People |
---|
document
Influence of prior deformation on creep crack growth behaviour of 316H austenitic steels
Abstract
<p>The influence of pre-strain and pre-stress on creep crack growth behaviour of 316H austenitic steels is studied experimentally and numerically in this paper. Compact tension, C(T), specimens (25mm thickness) have been extracted from two steam headers, one as-received and one uniformly compressed to the strain value of 8%. The C(T) specimen extracted from the as-received header was compressed, introducing a non-uniform strain field. Creep crack growth (CCG) tests were performed at 550°C. Comparisons have been provided with the results from as-received C(T) specimens. Finite element (FE) analysis has been carried out to simulate the CCG behaviour of the C(T) specimens. By choosing the problem parameters appropriately, good agreement may be achieved between the FE predictions and the creep data.</p>