Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Menes, Olivier

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006Thermo-mechanical modelling for the opening of electron-beam welded joints3citations

Places of action

Chart of shared publication
Rogeon, Philippe
1 / 4 shared
Carin, Muriel
1 / 21 shared
Manach, Pierre-Yves
1 / 14 shared
Sigrist, Jean-Francois
1 / 1 shared
Pilvin, Philippe
1 / 13 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Rogeon, Philippe
  • Carin, Muriel
  • Manach, Pierre-Yves
  • Sigrist, Jean-Francois
  • Pilvin, Philippe
OrganizationsLocationPeople

document

Thermo-mechanical modelling for the opening of electron-beam welded joints

  • Rogeon, Philippe
  • Menes, Olivier
  • Carin, Muriel
  • Manach, Pierre-Yves
  • Sigrist, Jean-Francois
  • Pilvin, Philippe
Abstract

The aim of this study is to estimate residual stresses and distortions during the assembly of dissimilar metallic materials welded by Electron Beam Welding (EBW) technique. This work is motivated by a new welding procedure for the manufacture of large speed reduction gear. The gear consists of a central hub of S275 J2G3 steel and a toothed wheel of 32CrMoV13 steel, chosen for its high fatigue performances. Preliminary experimental welding tests have shown the opening of the joint plane during the circular welding of the gear leading to lack-of-fusion defects. To improve the joining technique, a thermomechanical model has been developed to predict the opening of the joint plane during welding. A two-dimensional finite element model has been applied on a simplified geometry of smaller size. The opening of the joint plane has been modelled by two different ways, the first one uses activation / deactivation elements and the second one uses specific contact elements. Both techniques have shown similar displacements. The assumptions of plane stress or generalized plane strain are discussed. Numerical results obtained with similar metals with or without metallurgical transformations are presented. Calculations carried out with dissimilar metals are compared with experiments in terms of fusion zone size and displacements.

Topics
  • impedance spectroscopy
  • experiment
  • steel
  • fatigue
  • defect
  • two-dimensional
  • activation
  • joining