Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krishna, Shwetank

  • Google
  • 1
  • 5
  • 3

Montanuniversität Leoben

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Application of Deep Learning Technique to Predict Downhole Pressure Differential in Eccentric Annulus of Ultra-Deep Well3citations

Places of action

Chart of shared publication
Ridha, Syahrir
1 / 2 shared
Bataee, Mahmood
1 / 1 shared
Bhan, Uday
1 / 2 shared
Campbell, Scott
1 / 1 shared
Ilyas, Suhaib Umer
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Ridha, Syahrir
  • Bataee, Mahmood
  • Bhan, Uday
  • Campbell, Scott
  • Ilyas, Suhaib Umer
OrganizationsLocationPeople

document

Application of Deep Learning Technique to Predict Downhole Pressure Differential in Eccentric Annulus of Ultra-Deep Well

  • Ridha, Syahrir
  • Bataee, Mahmood
  • Bhan, Uday
  • Krishna, Shwetank
  • Campbell, Scott
  • Ilyas, Suhaib Umer
Abstract

<jats:title>Abstract</jats:title><jats:p>Accurate prediction of downhole pressure differential (surge/swab pressure gradient) in the eccentric annulus of ultra-deep wells during tripping operation is a necessity to optimize well geometry, reduction of drilling anomalies, and prevention of hazardous drilling accidents. Therefore, a new predictive model is developed to forecast surge/swab pressure gradient by using feed-forward and backpropagation deep neural networks (FFBP-DNN). A theoretical-based model is developed that follows the physical and mechanical aspects of surge/swab pressure generation in eccentric annulus during tripping operation. The data generated from this model, field data, and experimental data are used to train and test the FFBP-DNN networks. The network is developed used Keras’s deep learning framework. After testing the models, the most optimal arrangement of FFBP-DNN is the ReLU algorithm as an activation function, 4-hidden layers, the learning rate of 0.003, and 2300 of training numbers. The optimum FFBP-DNN model is validated by comparing it with field data (Wells K 470 and K 480, North Sea). It shows an excellent argument between predicted data and field data with an error range of ±7.68 %.</jats:p>

Topics
  • impedance spectroscopy
  • activation