Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kosaka, T.

  • Google
  • 3
  • 17
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2017Tension-tension testing of a novel mooring rope construction2citations
  • 2015High Fidelity Numerical Simulations of Textile Preform Deformationcitations
  • 2015Numerical and Experimental Investigation of Prepreg Compaction for Defect Formation Mechanismscitations

Places of action

Chart of shared publication
Johanning, Lars
1 / 5 shared
Yamamoto, I.
1 / 1 shared
Nakatsuka, H.
1 / 1 shared
Halswell, P.
1 / 2 shared
Weller, S. D.
1 / 2 shared
Belnoue, J. P-H.
1 / 1 shared
Hoa, S.
2 / 2 shared
El Said, B.
1 / 5 shared
Hallett, Stephen R.
2 / 270 shared
Nakai, A.
2 / 2 shared
Crawford, B.
2 / 2 shared
Thompson, A.
1 / 15 shared
Vaziri, R.
2 / 4 shared
Hojjati, M.
2 / 2 shared
Belnoue, J. P. -H.
1 / 1 shared
Nixon-Pearson, O.
1 / 1 shared
Ivanov, D.
1 / 19 shared
Chart of publication period
2017
2015

Co-Authors (by relevance)

  • Johanning, Lars
  • Yamamoto, I.
  • Nakatsuka, H.
  • Halswell, P.
  • Weller, S. D.
  • Belnoue, J. P-H.
  • Hoa, S.
  • El Said, B.
  • Hallett, Stephen R.
  • Nakai, A.
  • Crawford, B.
  • Thompson, A.
  • Vaziri, R.
  • Hojjati, M.
  • Belnoue, J. P. -H.
  • Nixon-Pearson, O.
  • Ivanov, D.
OrganizationsLocationPeople

document

Tension-tension testing of a novel mooring rope construction

  • Johanning, Lars
  • Yamamoto, I.
  • Nakatsuka, H.
  • Halswell, P.
  • Kosaka, T.
  • Weller, S. D.
Abstract

<p>Synthetic fibre ropes are in widespread use in maritime applications ranging from lifting to temporary and permanent mooring systems for vessels, offshore equipment and platforms. The selection of synthetic ropes over conventional steel components is motivated by several key advantages including selectable axial stiffness, energy absorption (and hence load mitigation), fatigue resistance and low unit cost. The long-term use of ropes as safety critical components in potentially high dynamic loading environments necessitates that new designs are verified using stringent qualification procedures. The International Organization for Standardization (ISO) is one certification body that has produced several guidelines for the testing of synthetic ropes encompassing quasi-static and dynamic loading as well as fatigue cycling. This paper presents the results of tension-tension tests carried out to ISO 2307:2010, ISO 18692:2007(E) and ISO/TS 19336:2015(E) on three different 12-strand rope constructions manufactured by Ashimori Industry Co. Ltd from polyester and Vectran® fibres. The purpose of the tests was to characterise the performance of a novel 12-strand construction and compare this to a conventional 12-strand construction. Utilising the Dynamic Marine Component test facility (DMaC) at the University of Exeter several key performance metrics were determined including; elongation, minimum break load (MBL) and quasistatic and dynamic stiffness. During the ISO 2307:2010(E) test programme the samples were tested dry and during the ISO 18692:2007(E) and ISO/TS 19336:2015(E) test programmes the samples were fully submerged in tap water after being soaked for at least 24 hours. Two methods were used to quantify sample extension: i) an optical tracking system and ii) a draw-wire potentiometer. Axial compression fatigue and cyclic loading endurance tests were also carried out on two Vectran® samples. Further load-to-failure tests and sample analysis were also carried out by Ashimori Industry Co. Ltd. It was found that the MBL of the samples exceeded the values specified by the manufacturer (by 7.7-29.5% for the polyester samples) with failure occurring at the splices in all cases and minor abrasion noted in several locations. The measured MBL of the novel polyester Straight Strand Rope (SSR) construction was up to 16% higher than the conventional construction with increases of quasi-static and dynamic stiffness of up to 6.8%. Differences between the viscoelastic and viscoplastic behaviour of the samples were also noted. The data obtained during these tests will provide insight into the behaviour of these materials and different rope constructions which will be of use to rope manufacturers, mooring system designers in addition to offshore equipment and vessel operators.</p>

Topics
  • impedance spectroscopy
  • steel
  • fatigue
  • wire
  • tension test