Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kwietniewski, Carlos E. Fortis

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Hydrogen induced stress cracking on superduplex stainless steel under cathodic protection3citations

Places of action

Chart of shared publication
Abreu, Eliakin
1 / 2 shared
Santos, Fabrício P.
1 / 2 shared
Fonseca, Jose
1 / 6 shared
Diehl, Bruno
1 / 2 shared
Renck, Tiago
1 / 2 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Abreu, Eliakin
  • Santos, Fabrício P.
  • Fonseca, Jose
  • Diehl, Bruno
  • Renck, Tiago
OrganizationsLocationPeople

document

Hydrogen induced stress cracking on superduplex stainless steel under cathodic protection

  • Kwietniewski, Carlos E. Fortis
  • Abreu, Eliakin
  • Santos, Fabrício P.
  • Fonseca, Jose
  • Diehl, Bruno
  • Renck, Tiago
Abstract

<p>The optimized and secure operation of oil and gas floating production units depends essentially on the performance of their devices, components and structures. Rigid pipelines are key equipment used in the offshore industry commonly employed as flowlines and risers. Carbon steel such as API 5L X65 is the material of choice for those applications due to its low relative cost and availability. However, for the Brazilian pre-salt it seems unlikely that carbon steels can be applyed, since the oil is contaminated by high concentrations of CO<sub>2</sub>, which causes generalized corrosion. Therefore, operators in Brazil should consider an alternative solution, such as lined or clad pipes as well as corrosion resistant alloys (CRA). Duplex and super duplex stainless steels (SDSS) have emerged in the last decade or so, as an alternative material for harsh environments. Nevertheless, according to recent studies, SDSS when cathodically protected against corrosion are prone to hydrogen induced stress cracking (HISC). The aim of this investigation is to evaluate through fracture toughness measurements the susceptibility of welded SDSS samples to HISC for two different levels of cathodic protection. For fracture toughness evaluation the step loading test method was selected. This practice is believed to be more realistic because samples are exposed to hydrogen during the entire tests instead of simple hydrogen pre-charging before performing the test in air, as recommended by some procedures. Fracture toughness values are given in terms of both CTOD and J-integral for crack initiation and maximum stress for SENB specimens. The results given here indicates that SDSS are quite susceptible to HISC especially in the heat affect zone even for potentials as negative as -650 mV<sub>sce</sub>.</p>

Topics
  • impedance spectroscopy
  • Carbon
  • stainless steel
  • corrosion
  • crack
  • Hydrogen
  • susceptibility
  • fracture toughness