Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Abdollahzadeh, Mohammadjavad

  • Google
  • 1
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Additively Manufactured NiTiHf Shape Memory Alloy Transformation Temperature Evaluation by Radial Basis Function and Perceptron Neural Networks5citations

Places of action

Chart of shared publication
Almotari, Abdalmageed
1 / 5 shared
Elahinia, Mohammad
1 / 10 shared
Abedi, Hossein
1 / 4 shared
Qattawi, Ala
1 / 4 shared
Mohajerani, Shiva
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Almotari, Abdalmageed
  • Elahinia, Mohammad
  • Abedi, Hossein
  • Qattawi, Ala
  • Mohajerani, Shiva
OrganizationsLocationPeople

document

Additively Manufactured NiTiHf Shape Memory Alloy Transformation Temperature Evaluation by Radial Basis Function and Perceptron Neural Networks

  • Almotari, Abdalmageed
  • Elahinia, Mohammad
  • Abedi, Hossein
  • Abdollahzadeh, Mohammadjavad
  • Qattawi, Ala
  • Mohajerani, Shiva
Abstract

<jats:title>Abstract</jats:title><jats:p>Employing Laser Powder Bed Fusion (LPBF) method to manufacture NiTiHf Shape Memory Alloy (SMA) is becoming more common. The major design property for NiTiHf is the transformation temperatures (TTs) which control the activation threshold of the SMA material and enable it to create the shape change due to a microstructure phase transformation. Given the high number of fabrication factors, machine learning (ML) approaches provide a promising approach to the design of SMA to control the TTs.</jats:p><jats:p>The main obstacle to using ML methods is the need for an established correlation between fabrication features and material properties. The presented work develops an ML approach to enable the prediction of the TTs for additively manufacturing NiTiHf. The work uses all available experimental data on additively and conventionally manufactured NiTiHf. Selected fabrication features included in the ML models consider the elemental compositions of NiTiHf, laser power, laser speed, hatch spacing, and almost all the processing steps historically used to manufacture, or heat treat the NiTiHf for SMA.</jats:p><jats:p>Multiple models of Multi-Layer Perceptron (MLP) and Radial Basis Function (RBF) Neural Networks (NN) are developed to predict the TTs of LPBF-manufactured NiTiHf. The models successfully predict the TTs for various NiTiHf fabrication conditions.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • selective laser melting
  • activation
  • machine learning