Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Balhara, Rama

  • Google
  • 1
  • 3
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Design of Micro-Scale Periodic Surface Textures by Pulsed Laser Melting and its Influence on Wettability7citations

Places of action

Chart of shared publication
Vadali, Madhu
1 / 2 shared
Hijam, Justin
1 / 1 shared
Gupta, Rohit
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Vadali, Madhu
  • Hijam, Justin
  • Gupta, Rohit
OrganizationsLocationPeople

document

Design of Micro-Scale Periodic Surface Textures by Pulsed Laser Melting and its Influence on Wettability

  • Vadali, Madhu
  • Hijam, Justin
  • Gupta, Rohit
  • Balhara, Rama
Abstract

<jats:title>Abstract</jats:title><jats:p>Micro- and nano-scale surface texture plays a major role in the wetting behavior of various metallic and non-metallic components. Modifying surfaces using lasers has been widely explored to induce periodic surface textures and thus modify the wetting behavior. Most of these modifications are either through addition or ablation material, making the process uneconomical for the industries. This work presents the pulsed laser surface melting (pLSM) based modification of metallic surfaces to change the wetting behavior, wherein the material is neither removed nor added but is redistributed to create micro-scale features. The size and geometry of the redistributed material depend on the incident laser power and pulse duration and thus affect the wetting behavior. Detailed experimental study on an initially near-flat titanium alloy (Ti6Al4V) surface at various laser powers and pulse durations are presented to understand their influence on the wetting behavior. Experiments are carried out at various laser powers ranging from 120W to 300W and various pulse durations ranging from 3μs to 20μs to understand the size and geometry achievable through pLSM. The highest peak to valley height of the pLSM induced feature (2.3μm) was achieved with 10μs long laser pulses at 210W power. This single spot feature was then rastered across the surface with varying spot spacing and line spacing to generate nine textured surfaces. The corresponding transverse contact angles and the orthogonal contact angles are reported. The results show that the textured surfaces are more wettable or hydrophilic than the near-flat untextured surface of Ti6AL4V. In addition, line spacing of the raster scan in the transverse direction has a more significant impact on the contact angle than the spot spacing in the orthogonal direction. The transverse direction has uniform groove-like features, which aid wettability more than the periodic circular features in the orthogonal direction. Nonetheless, pLSM is demonstrated as a potential method to develop micro-scale surface textures to increase the wettability (hydrophilicity) of the Ti6Al4V surface.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • texture
  • titanium
  • titanium alloy