Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Li, Jianzhi

  • Google
  • 2
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Synthesizing and Printing of Tin Oxide Nanoparticles Using a Single Ultrafast Laser System: A Feasibility Studycitations
  • 2022Ultrafast Laser Direct Writing of Conductive Patterns on Polyimide Substratecitations

Places of action

Chart of shared publication
Ahmed, Farid
2 / 6 shared
Lopez, Enrique Contreras
2 / 2 shared
Biswas, Ishrat Jahan
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Ahmed, Farid
  • Lopez, Enrique Contreras
  • Biswas, Ishrat Jahan
OrganizationsLocationPeople

article

Synthesizing and Printing of Tin Oxide Nanoparticles Using a Single Ultrafast Laser System: A Feasibility Study

  • Ahmed, Farid
  • Lopez, Enrique Contreras
  • Li, Jianzhi
Abstract

<jats:title>Abstract</jats:title><jats:p>In laser-based manufacturing, processing setup customization is one of the popular approaches used to enhance diversity in material processing using a single laser. In this study, we propose setup design modification of an ultrafast laser system to demonstrate both Tin Oxide (SnO2) nanoparticle synthesis from bulk metal, and post printing of said nanoparticles using Laser Induced Forward Transfer (LIFT) method. Using the Pulse Laser Ablation in Liquid (PLA-L) method, nanoparticles were synthesized from a bulk tin metal cube submerged in distilled water. Such nanoparticles dispersed in water can form colloidal ink that can be used for different printed electronics applications. Pulse energy was varied to investigate the influence on morphological properties of the nanoparticles. It was observed that a decrease in average particle size, and an increase in the number of particles synthesized occurred as the pulse energy was increased. In our study, we adapted the same laser system to enable LIFT operation for printing of the SnO2 nanoparticles. The colloidal ink prepared was then used in LIFT method to study feasibility of printing the synthesized nanoparticles. By varying not only the laser parameters but process parameters such as coating thickness and drying time, printed results can be improved. Experimental results show great potential for both synthesizing and printing of the nanoparticles using a single laser system. This study serves as a proof of concept that a single laser system can turn bulk metal into nanoparticles-based applications without the need for extra processing from other machines/systems, opening the door to highly customizable prints with reduced lead times.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • tin
  • drying
  • laser ablation