Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Altug, Suat Mert

  • Google
  • 1
  • 5
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Non-Planar Slicing Method for Maximizing the Anisotropic Behavior of Continuous Fiber-Reinforced Fused Filament Fabricated Parts1citations

Places of action

Chart of shared publication
Feuchtgruber, Matthias
1 / 1 shared
Drechsler, Klaus
1 / 9 shared
Chen, Chih-Yu
1 / 1 shared
Colin, David
1 / 2 shared
Freißmuth, Leonard
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Feuchtgruber, Matthias
  • Drechsler, Klaus
  • Chen, Chih-Yu
  • Colin, David
  • Freißmuth, Leonard
OrganizationsLocationPeople

document

Non-Planar Slicing Method for Maximizing the Anisotropic Behavior of Continuous Fiber-Reinforced Fused Filament Fabricated Parts

  • Feuchtgruber, Matthias
  • Drechsler, Klaus
  • Chen, Chih-Yu
  • Colin, David
  • Altug, Suat Mert
  • Freißmuth, Leonard
Abstract

<jats:title>Abstract</jats:title><jats:p>Fused filament fabrication (FFF), a type of extrusion-based additive manufacturing method, has proven its suitability for the production of highly complex components without costly tooling. However, traditional FFF systems are restricted to planar layer deposition, which results in poor surface smoothness and a reduction in strength and stiffness along the layer-stacking direction. Recent advancements in the FFF process have made it possible to reinforce and strengthen the printed parts with continuous fibers, which significantly increases the material’s anisotropy. Therefore, non-planar printing is necessary to optimize the anisotropic material behavior. This paper proposes a non-planar slicing method for optimizing the performance of continuous fiber-reinforced FFF parts printed using a 6-DOF industrial robot. The computational framework allows for the deposition of material on non-planar surfaces along the direction of the largest principal stress obtained from a finite element analysis following topology optimization. Three parts were successfully sliced and printed in a non-planar manner to generate stress-oriented toolpaths for continuous fiber-reinforced FFF using a 6-DOF robotic arm.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • extrusion
  • strength
  • anisotropic
  • finite element analysis
  • additive manufacturing
  • field-flow fractionation