Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Manogharan, Guha

  • Google
  • 3
  • 9
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024A Mobile Additive Manufacturing Robot Framework for Smart Manufacturing Systemscitations
  • 2021Additively manufactured patient-specific prosthesis for tumor reconstruction: Design, process, and properties14citations
  • 2021A Computational Study on Novel Runner Extension Designs via 3D Sand-Printing to Improve Casting Performance8citations

Places of action

Chart of shared publication
Li, Yifei
1 / 2 shared
Ju, Feng
1 / 1 shared
Park, Jeongwon
1 / 1 shared
Hast, Michael W.
1 / 1 shared
Tilton, Maryam
1 / 1 shared
Lewis, Gregory S.
1 / 1 shared
Fox, Edward
1 / 1 shared
King, Philip
1 / 3 shared
Stebbins, Ryan
1 / 1 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Li, Yifei
  • Ju, Feng
  • Park, Jeongwon
  • Hast, Michael W.
  • Tilton, Maryam
  • Lewis, Gregory S.
  • Fox, Edward
  • King, Philip
  • Stebbins, Ryan
OrganizationsLocationPeople

document

A Computational Study on Novel Runner Extension Designs via 3D Sand-Printing to Improve Casting Performance

  • Manogharan, Guha
  • King, Philip
  • Stebbins, Ryan
Abstract

<jats:title>Abstract</jats:title><jats:p>3D sand-printing (3DSP) has become more popular in foundry applications due to its ability to create complex gating geometries. Since filling related defects, like entrained air and bi-films, are most commonly caused by high melt velocity and turbulence, recent 3DSP research has focused on designing gating systems to reduce melt velocity and turbulence. However, there have been no reported efforts on advancements in the design of runner extensions as a method to improve casting quality, despite its tremendous impact on the initial metal flow characteristics. The ability to fabricate 3DSP molds allow for unique runner extension designs that aid in improving casting quality. This paper is the first study known to the authors that investigates novel 3D runner extension designs to determine the most effective design for reducing sand casting defects. Based on literature review and design principles developed for 3D sprue geometries, six different runner extensions were studied using Computational Fluid Dynamics (CFD) modeling for foundry pouring conditions. The designs were evaluated on their ability to reduce defects like entrained air and bubbles, as well as to prevent backflow and reflected waves. An unweighted ranking matrix and comparison matrix against the control (straight runner extension) has been established based on air entrainment, tracer, voids, and extension volume. The results showed that the by-pass principal and surge control systems are effective at reducing reflective waves and controlling the ingate flow. The novel 3D duckbill trap extension proposed in this study had the best overall performance based on a 16% reduction in entrained air and a 71% reduction in void particles in the casting volume compared to the control extension design. These results provide a framework to further optimize runner extensions, utilize the advantages of 3D Sand-Printing technology to improve mechanical strength and reduce filling defects in sand-casting.</jats:p>

Topics
  • impedance spectroscopy
  • melt
  • strength
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • void
  • sand casting