People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gries, Thomas
RWTH Aachen University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024A Review on False-Twist Texturingcitations
- 2024Towpreg manufacturing and characterization for filament winding applicationcitations
- 2024Shape-Setting of Self-Expanding Nickel–Titanium Laser-Cut and Wire-Braided Stents to Introduce a Helical Ridgecitations
- 2024Investigation of thermolabile particles for debonding on demand in fiber reinforced composites
- 2024Thermoplastic bicomponent‐fibers for organosheets via inline polymerization
- 2024Recycling potential of carbon fibres in the construction industry: From a technical and ecological perspectivecitations
- 2024Potential of Pressure Slip Casted All-Oxide CMC Elements for Use in Gas Turbine Systems
- 2023Influence of hybrid nano/micro particles on the mechanical performance of cross-ply carbon fibre fabric reinforced epoxy polymer composite materialscitations
- 2023Bicomponent melt spinning of polyamide 6/carbon nanotube/carbon black filaments: Investigation of effect of melt mass-flow rate on electrical conductivitycitations
- 2023Structural Performance of Textile Reinforced 3D-Printed Concrete Elementscitations
- 2023Toward a Greener Bioeconomy: Synthesis and Characterization of Lignin–Polylactide Copolymerscitations
- 2023Effect of thermoplastic impregnation on the mechanical behaviour of textile reinforcement for concretecitations
- 2023Functionalization of All-Oxide CMC Elements Using 3D Braiding and Pressure Slip Casting for Composite Processing: Approaches to Reduce the Filter Effect of Dense Reinforcement Textiles
- 2022Analysis of Curing and Mechanical Performance of Pre-Impregnated Carbon Fibers Cured within Concretecitations
- 2022Large-Scale Tungsten Fibre-Reinforced Tungsten and Its Mechanical Propertiescitations
- 2022Material characterisation of biaxial glass-fibre non-crimp fabrics as a function of ply orientation, stitch pattern, stitch length and stitch tensioncitations
- 2022Investigation of Cost-Effective Braided and Wound Composite Pipelines for Hydrogen Applicationscitations
- 20224D-textiles: development of bistable textile structures using rapid prototyping and the bionic approachcitations
- 2022Aachen Technology Overview of 3D Textile Materials and Recent Innovation and Applicationscitations
- 2022Textile reinforcement structures for concrete construction applications––a reviewcitations
- 2022Curing Adhesives with Woven Fabrics Made of Polymer Optical Fibre and PET Yarncitations
- 2021Damping Properties of Hybrid Composites Made from Carbon, Vectran, Aramid and Cellulose Fiberscitations
- 2021Preparation of Hollow Fiber Membranes Based On Poly(4-methyl-1-pentene) for Gas Separationcitations
- 2021Structural Analysis of Melt-Spun Polymer-Optical Poly(Methyl Methacrylate) Fibres by Small-Angle X-ray Scattering and Monte-Carlo Simulationcitations
- 2021Process Chain Development for the Fabrication of Three-Dimensional Braided Oxide Ceramic Matrix Compositescitations
- 2020Novel Low-Twist Bast Fibre Yarns from Flax Tow for High-Performance Composite Applicationscitations
- 2019Finite element modeling to predict the steady-state structural behavior of 4D textilescitations
Places of action
Organizations | Location | People |
---|
document
Investigation of Cost-Effective Braided and Wound Composite Pipelines for Hydrogen Applications
Abstract
<jats:title>Abstract</jats:title><jats:p>In order to enable an emission-free society by 2050, the distribution of green hydrogen is a key element for a successful transformation of the energy supply. This paper presents the design and manufacturing of composite pipelines made of fiber-reinforced plastic (FRP) and its potential for the transport of high-pressurized gases such as hydrogen. Furthermore, the extent to which FRP-pipelines can be a potential complement to existing steel pipelines is being discussed.</jats:p><jats:p>The wet winding process is an established manufacturing process for FRP-pipes which, however, provide only a fraction of all necessary requirements. Oftentimes, a trade between the different factors cost, weight, performance and feasibility is made. By means of benchmarking the alternative manufacturing approaches such as multi-supply filament winding (MFW) and radial braiding, the potential for cost-effective high-pressure composite pipelines are investigated within this paper. For the aspired operational pressure of 350 bars, suitable lay-ups are derived and validated via simulation according to ISO 14692. As pre-impregnated fibers, so-called towpregs, enable elevated winding speeds and reduced resin content variance, the study focusses on this material. Additionally, MFW allows the processing of up to 48 towpregs simultaneously and therefore, increased productivity compared to single-filament winding. Using the generated data and based on the material combinations investigated, the productivity of the MFW process is examined. The most promising design is selected for the manufacturing of a demonstrator via MFW. Finally, recommendations for the industrial upscale of composite pipeline manufacturing are presented and the manufacturing approach via radial braiding as an alternative is discussed.</jats:p>