Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ali, Shafahat

  • Google
  • 4
  • 9
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Finite Element Analysis and Process Parameters Optimization of AA2024 – T351 Alloy Machining Under Different Cooling Environments2citations
  • 2022Effect of build parameters and strain rate on mechanical properties of 3D printed PLA using DIC and desirability function analysis18citations
  • 2022Experimental and Statistical Optimization of Carbon-Fiber Reinforced Nylon Composite Based 3D Printed Cellular Structures6citations
  • 2021Current Research Trends in Variants of Minimum Quantity Lubrication (MQL): A Review4citations

Places of action

Chart of shared publication
Pervaiz, Salman
4 / 8 shared
Kannan, Sathish
2 / 4 shared
Samad, Wael A.
1 / 1 shared
Devjani, Deepak H.
1 / 1 shared
John, Joel S.
1 / 1 shared
Abdallah, Said
2 / 2 shared
Susantyoko, Rahmat Agung
1 / 3 shared
Mohammed, Abdallah Nassir Abdo
1 / 1 shared
Hisham, Ahmad
1 / 1 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Pervaiz, Salman
  • Kannan, Sathish
  • Samad, Wael A.
  • Devjani, Deepak H.
  • John, Joel S.
  • Abdallah, Said
  • Susantyoko, Rahmat Agung
  • Mohammed, Abdallah Nassir Abdo
  • Hisham, Ahmad
OrganizationsLocationPeople

document

Current Research Trends in Variants of Minimum Quantity Lubrication (MQL): A Review

  • Pervaiz, Salman
  • Kannan, Sathish
  • Ali, Shafahat
Abstract

<jats:title>Abstract</jats:title><jats:p>In this paper, an extensive literature review of sustainable machining using different minimum quantity lubrication (MQL) variants is presented. Nowadays, sustainable development (SD) is referred as a common global issue. Sustainability concept in machining is linked with two major goals. The first goal is to reduce the environmental impact by reducing the energy consumption in the process. The second goal is to reduce the consumption of hazardous non-biodegradable materials. During machining, it was evident that when the cutting of material takes place, it increases the heat produced due to plastic shear deformation and friction. In dry machining, the tool wear and surface roughness are very high and it is not practical to use this method. So, there is a need to introduce a coolant or lubricant in the cutting zone to control or reduce the cutting temperature. Conventional cutting fluids are referred as non-biodegradable in nature and high disposal cost is associated with them as well. The researchers found that Minimum quality lubricant (MQL) is an appropriate way to remove the heat from the work material and chips formed in this case are almost dry. Minimum quantity lubrication (MQL) has been emerged as a potential solution for the second goal. MQL is being popular in the metal cutting sector because of its ability to provide improved machinability while being sustainable at the same time. The main topic discussed in this article is to reduce the quantity of lubricant for the machining usage to move forward towards a cleaner and greener machining process. The research community also observed that when moving towards the superalloys primarily used in the aerospace and aircraft industry MQL technique is not efficient. Using the MQL technique, the friction is reduced by this lubricant film, but it does not take away the heat generated from the work material and tool.</jats:p><jats:p>Due to this reason, several variants of MQL were developed. These variants include advanced oil on water (OoW) droplet MQL, minimum quantity cooling lubricant (MQCL), and nano MQL etc. In MQCL coolant is used at the lower temperature, which is air or water, to remove the extra amount of heat from the work material. The current study compared performance of all these MQL variants. It has also been observed that MQL operating parameters and jet arrangements can significantly affect the machining performance. The current study will provide a detailed comprehensive review about the performance of these variants.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • superalloy