Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Keraita, J. K.

  • Google
  • 2
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Effects of weight ratio of novel Calotropis Procera seed fiber on PLA polymer compositecitations
  • 2022Mechanical and thermal characterization of silica particle-reinforced polymer compositescitations

Places of action

Chart of shared publication
Langat, H. K.
1 / 1 shared
Dimitrov, K.
1 / 1 shared
Herzog, M.
1 / 2 shared
Langat, Hassan K.
1 / 1 shared
Akinlabi, Esther Titilayo
1 / 235 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Langat, H. K.
  • Dimitrov, K.
  • Herzog, M.
  • Langat, Hassan K.
  • Akinlabi, Esther Titilayo
OrganizationsLocationPeople

document

Mechanical and thermal characterization of silica particle-reinforced polymer composites

  • Langat, Hassan K.
  • Akinlabi, Esther Titilayo
  • Keraita, J. K.
Abstract

<p>Polymer based composites are currently used in several fields including automobile, aerospace, biomedical, and domestic applications due to their high strength-to-weight ratio and other attractive properties. In the current study, silica particles are evaluated as reinforcement for three polymers namely, high impact polystyrene (HIPS), general purpose polystyrene (GPPS) and recycled low density polyethylene (rLDPE. The composites were prepared by varying the weight of silica particles in relation to the polymer matrix and then tensile, impact and thermal properties were evaluated using universal tensile testing machine, Charpy impact and differential scanning calorimeter (DSC) respectively. The mechanical results showed that for HIPS-Silica composite, the tensile strength increased with increased silica content from 13.6 MPa for pure HIPS to 13.9 MPa at 5 % silica and 14.8 GPa at 31% Silica. GPPS-Silica showed slight increase in tensile strength from 16.2 MPa for pure to 33.8 MPa at 5 % silica and reduced to 21.5 MPa at 31%. The rLDPE-silica composite showed reduced tensile strength from 10.4 MPa for recycled HDPE to 10.2 MPa at 5% silica and an increase at 31% silica to 11.7 MPa. The modulus of elasticity for all the samples increased with the increasing silica content. The impact strength was found to increase from 5.6 kJ/m<sup>2</sup> for pure PS -GPPS to 8.1 kJ/m<sup>2</sup> at 5 % silica. There was no remarkable increase in impact strength at 31% silica for PS- GPPS. For HIPS composite, the impact reduced from 47 kJ/m<sup>2</sup> for pure HIPS to 37 kJ/m<sup>2</sup> at 5% silica and 11 kJ/m<sup>2</sup> at 31% silica. Thermal results of the composites at 31% silica were compared with pure respective polymers. In terms of thermal and mechanical properties, the general-purpose polystyrene had the highest heat absorption capacity and tensile strength. The modulus of elasticity was also reported highest in the general-purpose polystyrene composite. The results showed slight change in glass transition temperature and an increased heat absorption property when silica was added to respective polymers. Based on the results, natural silica (diatomite)-based composites may be used as green construction materials.</p>

Topics
  • density
  • polymer
  • glass
  • glass
  • strength
  • composite
  • glass transition temperature
  • elasticity
  • differential scanning calorimetry
  • tensile strength
  • hot isostatic pressing