Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Irlinger, Franz

  • Google
  • 3
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Production of Spherical Monodisperse Metal Powders by Means of the Plateau-Rayleigh Instability of a Liquid Metal Jetcitations
  • 2021Inline Topology Measurement of Material Jetted Metal Partscitations
  • 2019Polychromatic Coloring of Dental Zirconia by Inkjet Printingcitations

Places of action

Chart of shared publication
Rehekampff, Christoph
3 / 7 shared
Schroeffer, Andreas
1 / 2 shared
Rumschoettel, Dominik
1 / 1 shared
Lueth, Tim C.
3 / 6 shared
Kirchebner, Benedikt
1 / 5 shared
Krebs, Florian
1 / 2 shared
Rumschöttel, Dominik
1 / 2 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Rehekampff, Christoph
  • Schroeffer, Andreas
  • Rumschoettel, Dominik
  • Lueth, Tim C.
  • Kirchebner, Benedikt
  • Krebs, Florian
  • Rumschöttel, Dominik
OrganizationsLocationPeople

document

Polychromatic Coloring of Dental Zirconia by Inkjet Printing

  • Rehekampff, Christoph
  • Rumschöttel, Dominik
  • Lueth, Tim C.
  • Irlinger, Franz
Abstract

<jats:title>Abstract</jats:title><jats:p>To enable the development of an automated coloring process, dental zirconia is examined in terms of porosity, pore size and shrinkage during sintering. The properties of commercially available metal ionic inks such as viscosity, density and surface tension are investigated. Droplet impact on the zirconia surface and the absorption into the pores is analyzed with a high speed camera. The color result after sintering is investigated and compared to tooth samples.</jats:p><jats:p>A method is developed to achieve a realistic, smooth color transition on flat zirconia samples. This is achieved by mixing the single inks directly on the zirconia through sequential application. Consequently, the number of different inks required to reproduce the full dental color scale can be reduced. Additionally, three dimensional tooth replacements are colored with the developed method.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • pore
  • surface
  • viscosity
  • porosity
  • sintering