Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Johnson, Kurt

  • Google
  • 3
  • 12
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2021Application of Oxygen-Enriched Combustion in an Industrial Reheating Furnace Using CFDcitations
  • 2020Numerical Analysis of Thermal Stress Development of Steel Slabs in a Pusher-Type Reheat Furnacecitations
  • 2018Optimization of Heat Transfer Process in a Walking Beam Reheat Furnace Using Computational Fluid Dynamicscitations

Places of action

Chart of shared publication
Li, Xiang
2 / 10 shared
Tian, Kelly
1 / 2 shared
Fabina, Larry
1 / 1 shared
Maiolo, Joe
1 / 2 shared
Zhou, Chenn
2 / 3 shared
Worl, Bethany
2 / 2 shared
Silaen, Armin K.
3 / 4 shared
Fabina, Lawrence
1 / 1 shared
Walla, Nicholas
2 / 2 shared
Zambrano, Francisco J. Martinez
1 / 2 shared
Chen, Yuchao
1 / 1 shared
Zhou, Chenn Q.
1 / 2 shared
Chart of publication period
2021
2020
2018

Co-Authors (by relevance)

  • Li, Xiang
  • Tian, Kelly
  • Fabina, Larry
  • Maiolo, Joe
  • Zhou, Chenn
  • Worl, Bethany
  • Silaen, Armin K.
  • Fabina, Lawrence
  • Walla, Nicholas
  • Zambrano, Francisco J. Martinez
  • Chen, Yuchao
  • Zhou, Chenn Q.
OrganizationsLocationPeople

document

Optimization of Heat Transfer Process in a Walking Beam Reheat Furnace Using Computational Fluid Dynamics

  • Johnson, Kurt
  • Chen, Yuchao
  • Walla, Nicholas
  • Silaen, Armin K.
  • Zhou, Chenn Q.
Abstract

<jats:p>In the steelmaking process, reheating furnaces are used to reheat steel slabs to a target rolling temperature. The bottom intermediate zone inside the reheating furnace plays a decisive role in controlling the slab temperature distribution before slabs enter the soaking zone. Efforts to maintain a uniform slab surface temperature and thus enhance product quality require a good understanding of the furnace’s operation. However, traditional physical experiments are costly and have high risks as well. In this study, a three-dimensional steady-state computational fluid dynamics (CFD) model was developed to investigate the flow field in the bottom intermediate zone of a full-scale reheating furnace. The commercial software ANSYS Fluent® was used to solve the transport equations to predict the flame length, heat transfer, and gas temperature near the slab. Total input mass flow rate, preheated air temperature, and air/fuel ratio were selected to investigate the comprehensive influence of the furnace’s performance, which can be evaluated from the flame length, flame angle, and average gas temperature near the slab. Importantly, an orthogonal experimental design was conducted to optimize the evaluation factors by considering the multi influencing factors simultaneously. The simulation results indicate that a higher mass flow rate produces a lower upwards flame angle, which can prevent the hot spot detected on the slab surface. A higher preheated air temperature leads to a higher average gas temperature in this furnace; meanwhile, the flame becomes shorter by enhancing the air-fuel ratio.</jats:p>

Topics
  • surface
  • experiment
  • simulation
  • steel