Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Motte, Damien

  • Google
  • 2
  • 3
  • 10

Lund University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2013Carbon Fiber Composite Materials in Modern Day Automotive Production Lines – A Case Study8citations
  • 2012A computer-based design system for lightweight grippers in the automotive industry2citations

Places of action

Chart of shared publication
Bjärnemo, Robert
2 / 2 shared
Petersson, Håkan
2 / 2 shared
Eriksson, Martin
1 / 4 shared
Chart of publication period
2013
2012

Co-Authors (by relevance)

  • Bjärnemo, Robert
  • Petersson, Håkan
  • Eriksson, Martin
OrganizationsLocationPeople

conferencepaper

A computer-based design system for lightweight grippers in the automotive industry

  • Eriksson, Martin
  • Bjärnemo, Robert
  • Petersson, Håkan
  • Motte, Damien
Abstract

This paper presents the development as well as the architecture of a computer-aided dedicated fixture design system intended to support the design of lightweight (carbon fiber composite) grippers for a major truck company. Lightweight grippers were required due to the increasing production rates in the automotive industry. The current robotic equipment was facing diverse problems during transportation and aligning of the parts, problems related to mass inertia, accuracy and stability. Moreover, the increased demands for truck customization and fast release of new product versions required a computer-based support for the design of the appropriate fixtures.<br/> This application is believed to be of interest for fixture research because the design of such complex fixtures is likely to appear more and more often. Specifically, such fixtures are subject to specific requirements that necessitate a systematic requirement elicitation method; they also require extensive conceptual design work as well as careful analysis activity planning.<br/> The main steps requisite for the development of the design system are reported: setup planning, fixture planning, conceptual design of the gripper. The architecture, the process and the constituent elements of the design system are also described and illustrated.

Topics
  • impedance spectroscopy
  • Carbon
  • composite