Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mare, Francesca Di

  • Google
  • 1
  • 11
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Micro-, macromechanical and aeroelastic investigation of glass - fiber based, lightweight turbomachinery componentscitations

Places of action

Chart of shared publication
Holeczek, K.
1 / 17 shared
Modeler, N.
1 / 1 shared
Di Mare, F.
1 / 1 shared
Holeczek, Klaudiusz
1 / 15 shared
Hartmaier, Alexander
1 / 54 shared
Iseni, Senad
1 / 1 shared
Prasad, Mahesh Ramaswamy Guru
1 / 1 shared
Modler, Nils
1 / 355 shared
Hartmaier, A.
1 / 9 shared
Iseni, S.
1 / 1 shared
Prasad, M. R. G.
1 / 3 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Holeczek, K.
  • Modeler, N.
  • Di Mare, F.
  • Holeczek, Klaudiusz
  • Hartmaier, Alexander
  • Iseni, Senad
  • Prasad, Mahesh Ramaswamy Guru
  • Modler, Nils
  • Hartmaier, A.
  • Iseni, S.
  • Prasad, M. R. G.
OrganizationsLocationPeople

document

Micro-, macromechanical and aeroelastic investigation of glass - fiber based, lightweight turbomachinery components

  • Holeczek, K.
  • Modeler, N.
  • Di Mare, F.
  • Holeczek, Klaudiusz
  • Hartmaier, Alexander
  • Mare, Francesca Di
  • Iseni, Senad
  • Prasad, Mahesh Ramaswamy Guru
  • Modler, Nils
  • Hartmaier, A.
  • Iseni, S.
  • Prasad, M. R. G.
Abstract

<p>A major technical challenge for modern aero engines is the development of designs which reduce noise and emission whilst increasing aerodynamic efficiency and ensuring aeroelastic stability of low-temperature engine components such as fans and low-pressure compressors. Composites are used in aviation due to their excellent stiffness and strength properties, which also enable additional flexibility in the design process. The weight reduction of the turbomachine components, due to composite materials and lighter engines, is especially relevant for the design and developments of hybrid-electric or distributed propulsion systems [1]. To accomplish this, a representative volume element (RVE) of a glass-fiber reinforced polymer is created, describing the geometrical arrangement of the textile reinforcement structure within the polymer matrix. For both phases, realistic linear elastic properties are assumed. This RVE will be investigated with the finite element method under various loading conditions to assess its anisotropic elastic properties and also its damping behaviour for elastic waves. To study the influence of delamination on the mechanical properties, small defects will be introduced into the model at the interface between reinforcement and matrix. Based on this micromechanical approach, a constitutive model for the composite will be formulated that describes the anisotropic properties as well as the damping behaviour. This constitutive model is then used to describe the material response in a macro-mechanical model, which serves as the basis for an aeroelastic analysis of a 1/3-scaled high-speed fan using a conventional (Ti-6Al -4V) and fiber composite material.</p>

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • glass
  • glass
  • strength
  • anisotropic
  • composite
  • defect