Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bourouga, Brahim

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Experimental approach for thermal contact resistance estimation at the glass / metal interface1citations

Places of action

Chart of shared publication
Alzetto, Florent
1 / 1 shared
Shaer, Ali Al
1 / 1 shared
Abdulhay, Bakri
1 / 1 shared
Elmarakbi, Ahmed
1 / 38 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Alzetto, Florent
  • Shaer, Ali Al
  • Abdulhay, Bakri
  • Elmarakbi, Ahmed
OrganizationsLocationPeople

document

Experimental approach for thermal contact resistance estimation at the glass / metal interface

  • Alzetto, Florent
  • Shaer, Ali Al
  • Abdulhay, Bakri
  • Elmarakbi, Ahmed
  • Bourouga, Brahim
Abstract

<p>An experimental device is designed and developed in order to estimate thermal conditions at the Glass / Metal contact interface. The device is made of two parts: the upper part contains the tool (piston) made of bronze and a heating device to raise the temperature of the piston to 700 C. The lower part is composed of a lead crucible and a glass sample. The assembly is provided with a heating system, an induction furnace of 6 kW for heating the glass up to 950 C. Both parts are put in contact through a mechanical system consisting of a pneumatic cylinder sliding on a column and a pump providing the required pressure in the enclosure. The developed experimental procedure has permitted the estimation of the Thermal Contact Resistance TCR using a developed measurement principle based on an inverse technique. The semi-transparent character of the glass has been taken into account by an additional radiative heat flux and an equivalent thermal conductivity. After the set-up tests, reproducibility experiments for a specific contact pressure have been carried out. Results shows a good repeatability of the registered and estimated parameters such as the piston surface temperature, heat flux density and TCR. The maximum dispersion of the estimated TCR doesn't exceed 6%.</p>

Topics
  • density
  • impedance spectroscopy
  • dispersion
  • surface
  • experiment
  • glass
  • glass
  • thermal conductivity
  • bronze