People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gardeniers, Han
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Alternative nano-lithographic tools for shell-isolated nanoparticle enhanced Raman spectroscopy substrates
- 2024Alternative nano-lithographic tools for shell-isolated nanoparticle enhanced Raman spectroscopy substratescitations
- 2023Fabrication of homogeneous shell-isolated sers substrates for catalytic applications
- 20233D‐Architected Alkaline‐Earth Perovskitescitations
- 2022Fabrication of microstructures in the bulk and on the surface of sapphire by anisotropic selective wet etching of laser-affected volumescitations
- 2022Additive Manufacturing of 3D Luminescent ZrO2:Eu3+ Architecturescitations
- 2022Vacuum-driven assembly of electrostatically levitated microspheres on perforated surfacescitations
- 2020Massive Parallel NEMS Flow Restriction Fabricated Using Self-Aligned 3D-Crystallographic Nanolithographycitations
- 2020Fabrication of millimeter-long structures in sapphire using femtosecond infrared laser pulses and selective etchingcitations
- 2020Spatial Segregation of Microspheres by Rubbing-Induced Triboelectrification on Patterned Surfacescitations
- 2018Three-dimensional fractal geometry for gas permeation in microchannelscitations
- 2018Morphology of single picosecond pulse subsurface laser-induced modifications of sapphire and subsequent selective etchingcitations
- 2012Production and characterization of micro- and nano-features in biomedical alumina and zirconia ceramics using a tape casting routecitations
- 2008On the resilience of PDMS microchannels after violent optical breakdown microbubble cavitation
- 2007Integrated electrochemical sensor array for on-line monitoring of yeast fermentationscitations
- 2007Spreading of thin-film metal patterns deposited on nonplanar surfaces using a shadow mask micromachined in si (110)citations
- 2006Fabrication of microfluidic networks with integrated electrodescitations
- 2006Monitoring of yeast cell concentration using a micromachnined impedance sensorcitations
- 2005Monitoring of yeast cell concentration using a micromachined impedance sensor
- 2003A low hydraulic capacitance pressure sensor for integration with a micro viscosity detectorcitations
- 2002Fabrication and characterization of MEMS based wafer-scale palladium-silver alloy membranes for hydrogen separation and hydrogenation/dehydrogenation reactionscitations
- 2002Integrated Micro- and Nanofluidics: Silicon Revisitedcitations
- 2002Micromachined Palladium - Silver Alloy Membranes for Hydrogen Separation
- 2001Local anodic bonding of Kovar to Pyrex aimed at high-pressure, solvent-resistant microfluidic connectionscitations
- 2001Failure mechanisms of pressurized microchannels, model, and experimentscitations
- 2000Failure mechanisms of pressurized microchannels, model and experiments
Places of action
Organizations | Location | People |
---|
document
Integrated Micro- and Nanofluidics: Silicon Revisited
Abstract
Although silicon may generally not be the material of first choice for applications in the field of fluidics for (bio)chemistry and medicine, the extended toolbox of fabrication methods makes it a very attractive material for the demonstration of microfluidic principles for these fields. In particular, the monocrystalline nature of silicon substrates in combination with anisotropic etching processes, the precise dry-etching techniques and sophisticated thin-film surface micromachining processes, can be used to create a large variety of innovative microstructures. Several examples of such micro- and nanofluidic structures for (bio)chemical and medical analysis will be presented and discussed.