Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Foo, Esther

  • Google
  • 4
  • 5
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2020Shape Memory Alloy Haptic Compression Garment for Media Augmentation in Virtual Reality Environment8citations
  • 2019Low-power, minimal-heat exposure shape memory alloy (SMA) actuators for on-body soft robotics4citations
  • 2019Design tradeoffs in the development of a wearable soft exoskeleton for upper limb mobility disorders1citations
  • 2018Preliminary study of the subjective comfort and emotional effects of on-body compression16citations

Places of action

Chart of shared publication
Priebe, Miles
1 / 2 shared
Schleif, Nicholas
1 / 4 shared
Lee, J. Walter
2 / 5 shared
Ozbek, Simon
2 / 5 shared
Woelfle, Heidi
1 / 4 shared
Chart of publication period
2020
2019
2018

Co-Authors (by relevance)

  • Priebe, Miles
  • Schleif, Nicholas
  • Lee, J. Walter
  • Ozbek, Simon
  • Woelfle, Heidi
OrganizationsLocationPeople

document

Low-power, minimal-heat exposure shape memory alloy (SMA) actuators for on-body soft robotics

  • Schleif, Nicholas
  • Lee, J. Walter
  • Foo, Esther
  • Ozbek, Simon
Abstract

<p>In the world of soft-robotic medical devices, there is a growing need for low profile, non-rigid, and lower power actuators for soft exoskeletons and dynamic compression garments. Advanced compression garments with integrated shape memory materials have been developed recently to alleviate the functional and usability limitations associated with traditional compression garments. These advanced garments use contractile shape memory alloy (SMA) coil actuators to produce dynamic compression on the body through selective heating of the SMA material. While these garments can create spatially- and temporally-controllable compression, typical SMA materials (e.g., 70℃ Flexinol) consume considerable power and require considerable thermal insulation to protect the wearer during the heating phase of the SMA actuation. Alternative SMA materials (e.g., NiTi #8 by Fort Wayne Metals, Inc.) transform below room temperature and do so using no applied electrical power and generate no waste heat. However, these materials are challenging to dynamically control and require active refrigeration to reset to material. In theory, low-temperature SMA actuators made from materials like NiTi #8 may maintain additional dynamic actuation capacity once equilibrated to room temperature (i.e., the material may not fully transform), as the SMA phase transformation temperature window expands when the material experiences applied stress. This paper investigates this possibility: we manufactured and tested low-temperature NiTi coil actuators to determine the magnitude of the additional force that can be generated via Joule heating once the material has equilibrated to room temperature. SMA spring actuators made from NiTi #8 consumed 84% less power and stabilized at significantly lower temperatures (26.0℃ vs. 41.2℃) than SMA springs made from 70℃ Flexinol, when actuated at identically fixed displacements (100% nominal strain) and when driven to produce equal forces (~3.35N). This demonstration of low-power, minimal-heat exposure SMA actuation holds promise for many future wearable actuation applications, including dynamic compression garments.</p>

Topics
  • impedance spectroscopy
  • phase
  • theory
  • laser emission spectroscopy