Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pearce, Bryce

  • Google
  • 3
  • 9
  • 141

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2018The influence of fluid-structure interaction on cloud cavitation about a hydrofoil2citations
  • 2018Load-dependent bend-twist coupling effects on the steady-state hydroelastic response of composite hydrofoils52citations
  • 2014Experimental study of the steady fluid-structure interaction of flexible hydrofoils87citations

Places of action

Chart of shared publication
Young, Yl
2 / 2 shared
Venning, James
1 / 1 shared
Smith, Sm
1 / 1 shared
Giosio, Dean
1 / 1 shared
Butler, D.
1 / 2 shared
Clarke, D.
1 / 1 shared
Phillips, Aw
2 / 2 shared
Garg, N.
1 / 2 shared
Zarruk, Gustavo
1 / 1 shared
Chart of publication period
2018
2014

Co-Authors (by relevance)

  • Young, Yl
  • Venning, James
  • Smith, Sm
  • Giosio, Dean
  • Butler, D.
  • Clarke, D.
  • Phillips, Aw
  • Garg, N.
  • Zarruk, Gustavo
OrganizationsLocationPeople

document

The influence of fluid-structure interaction on cloud cavitation about a hydrofoil

  • Young, Yl
  • Venning, James
  • Smith, Sm
  • Giosio, Dean
  • Pearce, Bryce
Abstract

The dynamics of cloud cavitation about rigid and flexible 3D hydrofoils is investigated in a cavitation tunnel. The two hydrofoils have identical undeformed geometry of tapered planform, NACA-0009 section and cantilevered setup at the hydrofoil root. The rigid model is made of stainless steel and the flexible model of carbon and glass-fibre reinforced epoxy resin with an effectively quasi-isotropic lay-up without material bend-twist coupling. Tests were conducted at a fixed incidence of 6?, a chord-based Reynolds number of 0.7?10<sup>6</sup> and a cavitation number ranging from 1.0 to 0.2. Unsteady force measurements were made simultaneously with high-speed imaging to enable correlation of forces and with cavity dynamics. High-resolution force spectra at discrete cavitation numbers and separate pressure sweeps were taken to acquire spectrograms of frequency response as a function of cavitation number. Three shedding modes, designated as types 1, 2 and 3, are apparent for both rigid and flexible hydrofoils although significant differences in peak amplitudes were observed. Types 2 and 3 shedding occur at high cavitation numbers where frequency varied with cavitation number and high-speed imaging showed the dominant shedding mechanism to be due to re-entrant jet formation. The type 1 shedding that developed with reduction in cavitation number, once cavity lengths grew to about full-chord, occurred at a nominally constant frequency. In this case, the imaging showed the dominant mechanism to be shockwave formation. This behaviour has been reported upon extensively in literature although there are some new features apparent from the data. The flexibility of the composite hydrofoil was found to increase the magnitude of the force fluctuations for the low frequency type 1 mode compared to the rigid hydrofoil. However, hydrofoil flexibility was seen to dampen the fluctuating magnitude of the high-frequency type 2 and 3 modes, despite being close to the hydrofoil?s natural frequency.

Topics
  • impedance spectroscopy
  • Carbon
  • stainless steel
  • glass
  • glass
  • composite
  • isotropic
  • resin