Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shiratori, Tomomi

  • Google
  • 1
  • 2
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Effect of CoCrMo Die and Tool Surface Nano-Texture on Micro Backward Extrusion Formability of AA6063-T62citations

Places of action

Chart of shared publication
Dohda, Kuniaki
1 / 4 shared
Horiuchi, Syunsuke
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Dohda, Kuniaki
  • Horiuchi, Syunsuke
OrganizationsLocationPeople

article

Effect of CoCrMo Die and Tool Surface Nano-Texture on Micro Backward Extrusion Formability of AA6063-T6

  • Shiratori, Tomomi
  • Dohda, Kuniaki
  • Horiuchi, Syunsuke
Abstract

<jats:title>Abstract</jats:title><jats:p>To manufacture micro parts used in medical and electronic devices, the machining scale must be reduced to the microscale. However, when applying existing plastic forming processes to the machining of microscale parts, the size effect caused by material properties and friction results in variations in product accuracy. To suppress the size effect, appropriate tool materials and tool surface treatments suitable for micro-scale machining must be considered. This study investigated the effects of tool surface properties such as die surface nano-texture on microextrudability such as extrusion load, product shape, and crystal structure of the product using AA6063-T6 billets as test specimens. A CoCrMO die was used as a new die material suitable for microextrusion. The extrusion load increased rapidly with the progression of the stroke for both dies. In the case of the CoCrMo die with nano-texture applied, the extrusion load was considerably lower than that of the AISI H13 die. Moreover, the extrusion length of the CoCrMo die with nano-texture applied was longer than that of the AISI H13 die. In addition, the nano-textured CoCrMo die exhibited less adhesion on the die surface. The results of material analysis using electron backscatter diffraction indicated that the nano-textured CoCrMo die improved material flowability and facilitated the application of greater strain. However, the AISI H13 die exhibited lower material flowability and non-uniform strain. Therefore, the tribology between the tool and the material was controlled by changing the surface properties of the die to improve the formability.</jats:p>

Topics
  • surface
  • polymer
  • extrusion
  • laser emission spectroscopy
  • texture
  • electron backscatter diffraction