Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Guha, Anirban

  • Google
  • 1
  • 2
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Guided Wave-Based Early-Stage Debonding Detection and Assessment in Stiffened Panel Using Machine Learning With Deep Auto-Encoded Features2citations

Places of action

Chart of shared publication
Banerjee, Sauvik
1 / 11 shared
Kumar, Abhijeet
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Banerjee, Sauvik
  • Kumar, Abhijeet
OrganizationsLocationPeople

article

Guided Wave-Based Early-Stage Debonding Detection and Assessment in Stiffened Panel Using Machine Learning With Deep Auto-Encoded Features

  • Banerjee, Sauvik
  • Kumar, Abhijeet
  • Guha, Anirban
Abstract

<jats:title>Abstract</jats:title><jats:p>Debonding between stiffener and base plate is a very common type of damage in stiffened panels. Numerous efforts have been made for debonding assessment in the stiffened panel structure using guided wave-based techniques. However, these studies are limited to the detection of through-the-flange-width debonding (i.e., full debonding). This paper attempts to develop a methodology for the detection and assessment of early-stage debonding (i.e., partial debonding) in the stiffened panel using machine learning (ML) algorithms. An experimentally validated finite element (FE) simulation model is used to create an initial guided wave dataset containing several debonding scenarios. This dataset is processed through a data augmentation process, followed by feature extraction involving higher harmonics of guided waves. Thereafter, the extracted feature is compressed using a deep autoencoder model. The compressed feature is used for hyperparameter tuning, training, and testing of several supervised ML algorithms, and their performance in the identification of debonding zone and prediction of its size is analyzed. Finally, the trained ML algorithms are tested with experimental data showing that the ML algorithms closely predict the zones of debonding and their sizes. The proposed methodology is an advancement in debonding assessment, specifically addressing early-stage debonding in stiffened panels.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • extraction
  • machine learning