Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hassan, Fouad El Haj

  • Google
  • 1
  • 2
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Modification of the Acoustic Mismatch Model and Diffuse Mismatch Model for Accurate Prediction of Interface Thermal Conductance at Low Temperatures2citations

Places of action

Chart of shared publication
Barakat, Nourhan
1 / 1 shared
Kazan, Michel
1 / 7 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Barakat, Nourhan
  • Kazan, Michel
OrganizationsLocationPeople

article

Modification of the Acoustic Mismatch Model and Diffuse Mismatch Model for Accurate Prediction of Interface Thermal Conductance at Low Temperatures

  • Hassan, Fouad El Haj
  • Barakat, Nourhan
  • Kazan, Michel
Abstract

<jats:title>Abstract</jats:title><jats:p>Houston's method for summing phonon modes in the Brillouin zone is applied to exclude specular transmission of phonon modes of specific symmetries, thus, modifying the Acoustic Mismatch Model when phonon heat flux is incident from a heavier to a lighter medium. The Houston method is also used to impose conservation of the number of phonons in each direction of high-symmetry, thus modifying the detailed balance theorem and the Diffuse Mismatch Model. Based on the assumption that phonons are in equilibrium at the interface and are transmitted specularly or diffusely by two-phonon elastic processes, interpolation between the modified Acoustic Mismatch Model and the modified Diffuse Mismatch Model has led to a general analytical formalism for low-temperature interface thermal conductance. The Debye temperature, the only parameter in the derived formalism, is expressed as a function of temperature by assimilating numerically obtained specific heat values to the Debye expression for specific heat. Previous measurements of the low-temperature thermal conductance of smooth and rough interfaces between dissimilar materials could be reproduced numerically without adjustment of model parameters, demonstrating the importance of modifications to the Acoustic Mismatch Model and the Diffuse Mismatch Model and supporting the hypothesis that anharmonic processes play a minimal role in heat transport across the interfaces studied below room temperature. The formalism developed is used to study the thermal conductance of the interface between silicon and germanium because of the potential of silicon-germanium nanocomposites for thermoelectric applications.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • Silicon
  • phonon modes
  • Germanium
  • specific heat