People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Phillips, B. J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Effect of Post-Deposition Heat Treatment on the Mechanical Behavior and Deformation Mechanisms of a Solid-State Additively Manufactured Al–Mg–Si Alloy
Abstract
<jats:title>Abstract</jats:title><jats:p>The effects of post-deposition heat treatment on the fatigue behavior of AA6061 processed by additive friction stir deposition (AFSD) were investigated for the first time in this work. A heat treatment to recover the T6 temper was performed on AFSD AA6061 is then subjected to strain-controlled fatigue and monotonic tension testing. Microstructural analysis revealed abnormal grain growth resulting in bimodal grain size distribution. Mechanical testing indicated a full recovery of the strength of the AA6061-T6 temper with comparable fatigue performance to the as-deposited AFSD AA6061. Fractography revealed deformation mechanisms in the post-deposition heat treatment not observed in the as-deposited samples, however, the fatigue resistance remained unchanged. A microstructure-sensitive fatigue model was implemented to capture the effects of the heat treatment process on the fatigue performance of the post-deposition heat-treated AFSD AA6061.</jats:p>