Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Uchida, Motoki

  • Google
  • 1
  • 3
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024High Temperature Tensile and Compressive Behaviors of Nanostructured Polycrystalline AlCoCrFeNi High Entropy Alloy: A Molecular Dynamics Study6citations

Places of action

Chart of shared publication
Toku, Yuhki
1 / 2 shared
Ju, Yang
1 / 2 shared
Kimura, Yasuhiro
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Toku, Yuhki
  • Ju, Yang
  • Kimura, Yasuhiro
OrganizationsLocationPeople

article

High Temperature Tensile and Compressive Behaviors of Nanostructured Polycrystalline AlCoCrFeNi High Entropy Alloy: A Molecular Dynamics Study

  • Toku, Yuhki
  • Ju, Yang
  • Uchida, Motoki
  • Kimura, Yasuhiro
Abstract

<jats:title>Abstract</jats:title><jats:p>Molecular dynamics studies were performed to assess tensile and compressive behaviors at high temperatures up to 1200 °C for nanostructured polycrystalline AlCoCrFeNi high entropy alloy (HEA). As the temperature increased, the tensile yield stress, tensile/compressive ultimate strengths, and elastic modulus decreased, whereas the compressive yield stress remained constant. The temperature dependence of the phase structures (face-centered cubic (FCC) and hexagonal close-packed (HCP)) showed notable features between tension and compression. The HEA underwent FCC → HCP phase transformation when strained under both tension and compression. The evolution of the intrinsic stacking faults (ISFs) and extrinsic stacking faults (ESFs), which underwent FCC → HCP phase transformation, was observed. During compression, the ISFs → ESFs transition produced parallel twins. The evolution of mean dislocation length for the perfect, Shockley, and stair-rod partial dislocations was observed. Changes in the Shockley and stair-rod partial dislocations were observed after experiencing strain. The temperature dependence of the Shockley partial dislocation was high, whereas the stair-rod partial dislocation exhibited low-temperature dependence. From the simulation results, the structural usage of nanostructured polycrystalline AlCoCrFeNi HEA at elevated temperatures is recommended.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • simulation
  • molecular dynamics
  • strength
  • dislocation
  • stacking fault