People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grigat, Niels
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Towpreg manufacturing and characterization for filament winding applicationcitations
- 2023Functionalization of All-Oxide CMC Elements Using 3D Braiding and Pressure Slip Casting for Composite Processing: Approaches to Reduce the Filter Effect of Dense Reinforcement Textiles
- 2022Investigation of Cost-Effective Braided and Wound Composite Pipelines for Hydrogen Applicationscitations
- 2022Aachen Technology Overview of 3D Textile Materials and Recent Innovation and Applicationscitations
- 2021Process Chain Development for the Fabrication of Three-Dimensional Braided Oxide Ceramic Matrix Compositescitations
- 2018Fabrication of Fiber Reinforced Plastics by Ultrasonic Welding
- 2018Low-Cost Fabrication of Fiber Reinforced Plastics by Ultrasonic Processing
Places of action
Organizations | Location | People |
---|
article
Functionalization of All-Oxide CMC Elements Using 3D Braiding and Pressure Slip Casting for Composite Processing: Approaches to Reduce the Filter Effect of Dense Reinforcement Textiles
Abstract
<jats:title>Abstract</jats:title><jats:p>A key element for the transition to sustainable energy lies in the transformation of the power plant fleet, which is dominated by fossil fuels, towards sustainable energy production from renewable energy sources. An increase in efficiency and reduction of exhaust gas emissions, especially the minimization of CO2 emissions, is possible through the use of new turbine materials which can withstand higher temperature levels. Oxide ceramics are well known for their high stability in aggressive environments, low density, high melting point, high stiffness and great creep resistance, but their brittleness has strongly limited their number of applications. Therefore, the implementation of fiber reinforcement using the 3D braiding process shows great potential to increase the damage tolerance of CMC and consequently the performance of thermal machines significantly.</jats:p><jats:p>Currently, the impregnation of 3D braids for the reinforcement of ceramic composites poses a challenge due to the high packing density of the textiles. In order to enable a homogeneous impregnation of the fiber structures using highly viscous ceramic slurries, the CMC research group at RWTH Aachen University’s Institute of Textile Technology (ITA) is investigating the combination of 3D braiding and pressure slip casting for an economical production of all-oxide CMCs. To increase the impregnation quality of dense textiles, this paper describes approaches to reduce the filter effect of braids. The results of an initial investigation into the functionalization of 2D braided reinforcement structures by using support structures and flow aids are described. The effectiveness of the impregnation ability is assessed by evaluating the residual porosity of generated green compacts via μCT analysis.</jats:p>