People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gries, Thomas
RWTH Aachen University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024A Review on False-Twist Texturingcitations
- 2024Towpreg manufacturing and characterization for filament winding applicationcitations
- 2024Shape-Setting of Self-Expanding Nickel–Titanium Laser-Cut and Wire-Braided Stents to Introduce a Helical Ridgecitations
- 2024Investigation of thermolabile particles for debonding on demand in fiber reinforced composites
- 2024Thermoplastic bicomponent‐fibers for organosheets via inline polymerization
- 2024Recycling potential of carbon fibres in the construction industry: From a technical and ecological perspectivecitations
- 2024Potential of Pressure Slip Casted All-Oxide CMC Elements for Use in Gas Turbine Systems
- 2023Influence of hybrid nano/micro particles on the mechanical performance of cross-ply carbon fibre fabric reinforced epoxy polymer composite materialscitations
- 2023Bicomponent melt spinning of polyamide 6/carbon nanotube/carbon black filaments: Investigation of effect of melt mass-flow rate on electrical conductivitycitations
- 2023Structural Performance of Textile Reinforced 3D-Printed Concrete Elementscitations
- 2023Toward a Greener Bioeconomy: Synthesis and Characterization of Lignin–Polylactide Copolymerscitations
- 2023Effect of thermoplastic impregnation on the mechanical behaviour of textile reinforcement for concretecitations
- 2023Functionalization of All-Oxide CMC Elements Using 3D Braiding and Pressure Slip Casting for Composite Processing: Approaches to Reduce the Filter Effect of Dense Reinforcement Textiles
- 2022Analysis of Curing and Mechanical Performance of Pre-Impregnated Carbon Fibers Cured within Concretecitations
- 2022Large-Scale Tungsten Fibre-Reinforced Tungsten and Its Mechanical Propertiescitations
- 2022Material characterisation of biaxial glass-fibre non-crimp fabrics as a function of ply orientation, stitch pattern, stitch length and stitch tensioncitations
- 2022Investigation of Cost-Effective Braided and Wound Composite Pipelines for Hydrogen Applicationscitations
- 20224D-textiles: development of bistable textile structures using rapid prototyping and the bionic approachcitations
- 2022Aachen Technology Overview of 3D Textile Materials and Recent Innovation and Applicationscitations
- 2022Textile reinforcement structures for concrete construction applications––a reviewcitations
- 2022Curing Adhesives with Woven Fabrics Made of Polymer Optical Fibre and PET Yarncitations
- 2021Damping Properties of Hybrid Composites Made from Carbon, Vectran, Aramid and Cellulose Fiberscitations
- 2021Preparation of Hollow Fiber Membranes Based On Poly(4-methyl-1-pentene) for Gas Separationcitations
- 2021Structural Analysis of Melt-Spun Polymer-Optical Poly(Methyl Methacrylate) Fibres by Small-Angle X-ray Scattering and Monte-Carlo Simulationcitations
- 2021Process Chain Development for the Fabrication of Three-Dimensional Braided Oxide Ceramic Matrix Compositescitations
- 2020Novel Low-Twist Bast Fibre Yarns from Flax Tow for High-Performance Composite Applicationscitations
- 2019Finite element modeling to predict the steady-state structural behavior of 4D textilescitations
Places of action
Organizations | Location | People |
---|
article
Functionalization of All-Oxide CMC Elements Using 3D Braiding and Pressure Slip Casting for Composite Processing: Approaches to Reduce the Filter Effect of Dense Reinforcement Textiles
Abstract
<jats:title>Abstract</jats:title><jats:p>A key element for the transition to sustainable energy lies in the transformation of the power plant fleet, which is dominated by fossil fuels, towards sustainable energy production from renewable energy sources. An increase in efficiency and reduction of exhaust gas emissions, especially the minimization of CO2 emissions, is possible through the use of new turbine materials which can withstand higher temperature levels. Oxide ceramics are well known for their high stability in aggressive environments, low density, high melting point, high stiffness and great creep resistance, but their brittleness has strongly limited their number of applications. Therefore, the implementation of fiber reinforcement using the 3D braiding process shows great potential to increase the damage tolerance of CMC and consequently the performance of thermal machines significantly.</jats:p><jats:p>Currently, the impregnation of 3D braids for the reinforcement of ceramic composites poses a challenge due to the high packing density of the textiles. In order to enable a homogeneous impregnation of the fiber structures using highly viscous ceramic slurries, the CMC research group at RWTH Aachen University’s Institute of Textile Technology (ITA) is investigating the combination of 3D braiding and pressure slip casting for an economical production of all-oxide CMCs. To increase the impregnation quality of dense textiles, this paper describes approaches to reduce the filter effect of braids. The results of an initial investigation into the functionalization of 2D braided reinforcement structures by using support structures and flow aids are described. The effectiveness of the impregnation ability is assessed by evaluating the residual porosity of generated green compacts via μCT analysis.</jats:p>