Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Troconis, Brendy C. Rincon

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Characterizing the Adhesion Between Thin Films and Rigid Substrates Using Digital Image Correlation-Informed Inverse Finite Elements and the Blister Test1citations

Places of action

Chart of shared publication
Risk-Mora, David Y.
1 / 1 shared
Restrepo, David
1 / 3 shared
Rincon-Tabares, Juan-Sebastian
1 / 1 shared
Dahal, Drishya
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Risk-Mora, David Y.
  • Restrepo, David
  • Rincon-Tabares, Juan-Sebastian
  • Dahal, Drishya
OrganizationsLocationPeople

article

Characterizing the Adhesion Between Thin Films and Rigid Substrates Using Digital Image Correlation-Informed Inverse Finite Elements and the Blister Test

  • Troconis, Brendy C. Rincon
  • Risk-Mora, David Y.
  • Restrepo, David
  • Rincon-Tabares, Juan-Sebastian
  • Dahal, Drishya
Abstract

<jats:title>Abstract</jats:title><jats:p>Characterizing the adhesion between thin films and rigid substrates is crucial in engineering applications. Still, existing standard methods suffer from issues such as poor reproducibility, difficulties in quantifying adhesion parameters, or overestimation of adhesion strength and fracture energy. Recent studies have shown that the blister test (BT) is a superior method for characterizing adhesion, as it provides a quantifiable measurement of mix-mode fracture energy, and it is highly reproducible. In this paper, we present a novel method to characterize mechanical mix-mode adhesion between thin films and rigid substrates using the BT. Our method combines the full triaxial displacement field obtained through digital image correlation with inverse finite element method simulations using cohesive zone elements. This approach eliminates the need for making any mechanistic or kinematic assumptions of the blister formation and allows the characterization of the full traction-separation law governing the adhesion between the film and the substrate. To demonstrate the efficacy of this methodology, we conducted a case study analyzing the adhesion mechanics of a polymeric pressure-sensitive adhesive on an aluminum substrate. Our results indicate that the proposed technique is a reliable and effective method for characterizing the mix-mode traction-separation law governing the mechanical behavior of the adhesive interface and could have broad applications in the field of materials science and engineering. Also, by providing a comprehensive understanding of the adhesion mechanics between thin films and rigid substrates, our method can aid in the design and optimization of adhesively bonded structures.</jats:p>

Topics
  • impedance spectroscopy
  • thin film
  • simulation
  • aluminium
  • strength