Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saini, Dheeraj Kumar

  • Google
  • 2
  • 2
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Numerical Modeling and Experimental Study of Solidification Behavior of Al-Mg2Si Composite Sheet Fabricated Using Continuous Casting Route12citations
  • 2022Effect of alloying elements on thermal stability of Aluminium-Cerium based alloyscitations

Places of action

Chart of shared publication
Gope, Rahul
1 / 2 shared
Mandal, Animesh
1 / 5 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Gope, Rahul
  • Mandal, Animesh
OrganizationsLocationPeople

article

Numerical Modeling and Experimental Study of Solidification Behavior of Al-Mg2Si Composite Sheet Fabricated Using Continuous Casting Route

  • Saini, Dheeraj Kumar
Abstract

<jats:title>Abstract</jats:title><jats:p>Owing to manufacturing challenges, the fabrication of thin sheets of metal matrix composites has been an area of concern for sheet manufacturers. Converting a billet of composite into a sheet using rolling and extrusion is quite energy-intensive and prone to cracking using the conventional casting route. To address this issue, this study explores the development of particle-reinforced near eutectic Al-Mg2Si composite sheets using a vertical twin-roll continuous casting process. The numerical simulation involves fluid flow, solidification, and heat transfer analysis of the twin-roll continuous casting process for producing thin strips. Processing parameters such as the velocity of rolls and superheat temperature of the melt are optimized to successfully convert the melt into a sheet of composite material. A combined numerical and experimental study show that the continuous casting process is more sensitive to the casting speed. A small change in roller speed (2 rpm) significantly affects the solidified fraction at the roller exit. Optimizing the casting speed to 0.072 m/s and inlet temperature to 886 K, an in situ Al-Mg2Si composite sheet of 3 mm thickness is successfully cast. The particle distribution along the casting direction of the sheet is uniform, ensuring the homogeneous mechanical properties reported in terms of hardness. The entire process does not require external stirring to get uniform distribution of the reinforced particles.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • melt
  • extrusion
  • composite
  • hardness
  • particle distribution
  • solidification
  • continuous casting