Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dighton, Chris

  • Google
  • 1
  • 6
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Thickness Control of Autoclave-Molded Composite Laminates5citations

Places of action

Chart of shared publication
Gongadze, Ekaterina
1 / 4 shared
Belnoue, Jonathan P.-H.
1 / 35 shared
Hallett, Stephen R.
1 / 270 shared
Nash, Gregory
1 / 1 shared
Moss, Martin
1 / 1 shared
Hemingway, Brett
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Gongadze, Ekaterina
  • Belnoue, Jonathan P.-H.
  • Hallett, Stephen R.
  • Nash, Gregory
  • Moss, Martin
  • Hemingway, Brett
OrganizationsLocationPeople

article

Thickness Control of Autoclave-Molded Composite Laminates

  • Gongadze, Ekaterina
  • Belnoue, Jonathan P.-H.
  • Hallett, Stephen R.
  • Dighton, Chris
  • Nash, Gregory
  • Moss, Martin
  • Hemingway, Brett
Abstract

<jats:title>Abstract</jats:title><jats:p>Composite materials and especially those made from pre-impregnated (prepreg) material are widely used in the aerospace industry. To achieve the tight assembly dimensional tolerances required, manufacturers rely on additional manufacturing steps like shimming or machining, which generate extra waste, which are time-consuming and expensive. Prepreg sheets come naturally with fiber and resin volume content variability that leads manufacturers to guarantee cured ply thicknesses within a typical +/−5% margin of their nominal values. For thick laminates, this can equate to a thickness variability of as much as a few millimeter. To solve the issue, it is proposed to twin in situ laser measurements of the uncured prepreg thickness with numerical simulations of the laminate autoclave consolidation and cure process and to adjust the number of additional sacrificial plies in the laminate based on the model predictions. This reduces the need for expensive and time-consuming trial and error approaches, extra machining operations, and results in the production of a part with high accuracy dimensions. Data for IM7/8552 and IM7/977-3 are presented to demonstrate the potential of the method to reach an almost exact target thickness for flat panels.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • composite
  • resin