Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rajakumar, Selvarajan

  • Google
  • 1
  • 3
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Influence of Diffusion Bonding Pressure on Microstructural Features and Strength Performance of Dissimilar Ti–6Al–4V Alloy and AISI 304 Steel Joints Developed Using Copper Interlayer11citations

Places of action

Chart of shared publication
Negemiya, A. Arun
1 / 2 shared
Ivanov, Mikhail
1 / 7 shared
Sonar, Tushar
1 / 13 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Negemiya, A. Arun
  • Ivanov, Mikhail
  • Sonar, Tushar
OrganizationsLocationPeople

article

Influence of Diffusion Bonding Pressure on Microstructural Features and Strength Performance of Dissimilar Ti–6Al–4V Alloy and AISI 304 Steel Joints Developed Using Copper Interlayer

  • Negemiya, A. Arun
  • Ivanov, Mikhail
  • Sonar, Tushar
  • Rajakumar, Selvarajan
Abstract

<jats:title>Abstract</jats:title><jats:p>The joining of Ti–6Al–4V (Ti64) alloy and AISI 304 austenitic stainless steel (ASS 304) carries significant importance in aeroengines for turbine blade applications. However, it is difficult to join using fusion welding. The fusion welding of Ti64 alloy and ASS 304 steel promotes the evolution of various Fe–Cr–Ti and Fe–Ti intermetallics in weld zone owing to limited solid solubility of Fe, Cr, Ti, and Ni with each other. The evolution of these intermetallics deteriorates the strength performance of joints. Hence for joining Ti64 alloy and ASS 304 steel, vacuum diffusion bonding (VDB) method is employed with thin copper (Cu) foil as an interlayer. The DB pressure extends significant influence on microstructural evolution and strength of joints. So, for the feasibility of joining Ti64 alloy and ASS 304 steel, the effect of DB pressure on microstructure and strength of joints is investigated. Results showed that the dissimilar joints of Ti64 alloy and ASS 304 steel developed using the DB pressure of 14 MPa exhibited greater lap shear strength (LSS) and bonding strength (BS) of 180 MPa and 268 MPa, respectively. It is attributed to the improved coalescence of joining interface and the development of ideal bonding width with the least amount of embrittlement consequences. An increase in DB pressure increases the width of the diffusion region which promotes the development of detrimental intermetallics of Ti–Fe and deteriorates the strength of dissimilar joints.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • stainless steel
  • strength
  • copper
  • intermetallic
  • joining
  • laser sintering