Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Troutman, J. R.

  • Google
  • 1
  • 4
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Face Turning of Single Crystal (111)Ge: Cutting Mechanics and Surface/Subsurface Characteristics6citations

Places of action

Chart of shared publication
Davies, M. A.
1 / 1 shared
Tunesi, M.
1 / 1 shared
Harriman, T. A.
1 / 1 shared
Lucca, D. A.
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Davies, M. A.
  • Tunesi, M.
  • Harriman, T. A.
  • Lucca, D. A.
OrganizationsLocationPeople

article

Face Turning of Single Crystal (111)Ge: Cutting Mechanics and Surface/Subsurface Characteristics

  • Troutman, J. R.
  • Davies, M. A.
  • Tunesi, M.
  • Harriman, T. A.
  • Lucca, D. A.
Abstract

<jats:title>Abstract</jats:title><jats:p>Single crystal Ge is a semiconductor that has broad applications, especially in manipulation of infrared light. Diamond machining enables the efficient production of surfaces with tolerances required by the optical industry. During machining of anisotropic single crystals, the cutting direction with respect to the in-plane lattice orientation plays a fundamental role in the final quality of the surface and subsurface. In this study, on-axis face turning experiments were performed on an undoped (111)Ge wafer to investigate the effects of crystal anisotropy and feedrate on the surface and subsurface conditions. Atomic force microscopy and scanning white light interferometry were used to characterize the presence of brittle fracture on the machined surfaces and to evaluate the resultant surface roughness. Raman spectroscopy was performed to evaluate the residual stresses and lattice disorder induced by the tool during machining. Nanoindentation with Berkovich and cube corner indenter tips was performed to evaluate elastic modulus, hardness, and fracture toughness of the machined surfaces and to study their variations with feedrate and cutting direction. Post-indentation studies of selected indentations were also performed to characterize the corresponding quasi-plasticity mechanisms. It was found that an increase of feedrate produced a rotation of the resultant force imparted by the tool indicating a shift from indentation-dominant to cutting-dominant behavior. Fracture increased with the feedrate and showed a higher propensity when the cutting direction belonged to the &amp;lt;112¯&amp;gt; family.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • single crystal
  • experiment
  • atomic force microscopy
  • semiconductor
  • anisotropic
  • hardness
  • nanoindentation
  • plasticity
  • Raman spectroscopy
  • fracture toughness
  • interferometry