Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Narangaparambil, Jinesh

  • Google
  • 3
  • 7
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Process-Recipe Development for Printing of Multilayer Circuitry With <i>Z</i>-Axis Interconnects Using Aerosol-Jet Printed Dielectric Vias1citations
  • 2020Acceleration Factor Modeling of Flexible Electronic Substrates From Actual Human Body Measurementscitations
  • 2020Flexure and Twist Test Reliability Assurance of Flexible Electronics2citations

Places of action

Chart of shared publication
Soni, Ved
1 / 2 shared
Lall, Pradeep
3 / 19 shared
Miller, Scott
2 / 6 shared
Liu, Wei
1 / 20 shared
Yadav, Vikas
1 / 3 shared
Thomas, Tony
1 / 5 shared
Leever, Ben
1 / 1 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Soni, Ved
  • Lall, Pradeep
  • Miller, Scott
  • Liu, Wei
  • Yadav, Vikas
  • Thomas, Tony
  • Leever, Ben
OrganizationsLocationPeople

article

Process-Recipe Development for Printing of Multilayer Circuitry With <i>Z</i>-Axis Interconnects Using Aerosol-Jet Printed Dielectric Vias

  • Soni, Ved
  • Narangaparambil, Jinesh
  • Lall, Pradeep
  • Miller, Scott
Abstract

<jats:title>Abstract</jats:title><jats:p>Flexible electronics is emerging as a new consumer-industry phenomenon. The promise of additively printed flexible electronics has sparked interest in a detailed understanding of the parameters and interactions of the printing process with the realized performance. Aerosol Jet printing technology has garnered increased interest, owing to a noncontact nature of print process and the high standoff allowing for printing on nonplanar surfaces. Prior efforts with aerosol-jet printing have focused on single-layer substrates. The current efforts focus on higher end printed circuit boards designs, which may need multilayers, with multilayer stacking of interconnections and z-axis connections through vias. The results presented in the paper attempt to address the need for process recipes for multilayer circuits and z-axis interconnects. Aerosol printing method has been shown to have wide compatibility with wide array of inks such as silver, copper, and carbon. Realization of high-volume scale-up of the process needs process recipes with statistical assessment of process stability and variance. In this paper, z-axis interconnects have been realized with the help of Aerosol printable silver ink and dielectric polyimide ink. The interaction of the sintering profile and the realized conductivity and shear load value of the printed conductive metal layers has been presented for each of the additional layers. Additive build-up processes may need successive exposure to temperature for the purpose of sintering. The downstream-printed conductive lines would undergo different sintering conditions and would then be tested for parameters such as interconnect resistance and shear load to failure. This paper explores the printing of multilayer up to eight conductive layers. Sintering profile for lower resistance per unit length and higher shear load to failure was tested.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • silver
  • copper
  • sintering