Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Locker, David

  • Google
  • 4
  • 5
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Evolution of Anand Parameters for Thermally Aged Sn-Ag-Cu Lead-Free Alloys at Low Operating Temperature8citations
  • 2021Evolution of Anand Parameters With Elevated Temperature Aging for SnAgCu Lead-free Alloys6citations
  • 2020High Strain Rate Mechanical Properties of SAC-Q With Sustained Elevated Temperature Storage at 100 °C9citations
  • 2015Stress–Strain Behavior of SAC305 at High Strain Rates17citations

Places of action

Chart of shared publication
Yadav, Vikas
2 / 3 shared
Lall, Pradeep
4 / 19 shared
Suhling, Jeff
4 / 7 shared
Mehta, Vishal
1 / 3 shared
Shantaram, Sandeep
1 / 1 shared
Chart of publication period
2022
2021
2020
2015

Co-Authors (by relevance)

  • Yadav, Vikas
  • Lall, Pradeep
  • Suhling, Jeff
  • Mehta, Vishal
  • Shantaram, Sandeep
OrganizationsLocationPeople

article

Evolution of Anand Parameters for Thermally Aged Sn-Ag-Cu Lead-Free Alloys at Low Operating Temperature

  • Locker, David
  • Yadav, Vikas
  • Lall, Pradeep
  • Suhling, Jeff
Abstract

<jats:title>Abstract</jats:title><jats:p>In extreme environmental applications, such as aerospace and automotive, electronics may endure high or low operating temperatures during service, handling, and storage. An electronic assembly may experience strain rates of 1–100 per sec of strain and ambient temperatures of –65 to +200 °C. Electronic assembly's temperature depends mainly on location, energy dissipation, and thermal architecture. Electronic assemblies in automotive applications may be located underhood, on engine, on-transmission, and or in wheel well. Study of property evolution of solders used for interconnection is important for assurance of reliability. Degradation in material properties for lead-free solder alloys can be caused by change in microstructure due to variation in temperatures. There is need for data on the effect of operating period and operating conditions on the material properties. Addition of dopants in Sn-Ag-Cu (SAC) alloys has been shown to improve mechanical properties and minimize deterioration due to aging at lower strain rates. SAC-Q is formulated with Sn-Ag-Cu with addition of Bi (SAC+Bi). It has been observed that adding Bismuth (Bi) to SAC alloy can play an important role to make the solder alloy resistant to aging-induced degradations. In author's prior research the evolution of Anand parameters and materials properties for SAC solder (SAC105, SAC305, and SAC-Q) at high temperatures and high strain rates has been studied. However, data on thermally aged SAC solder alloys at high strain rate levels at low operating temperatures are not available in published literature. In this paper, materials characterization of thermally aged SAC (SAC105 and SAC-Q) solder at low operating temperatures (−65 °C to 0 °C) and at high strain rates (10–75 per sec) has been studied. Stress–strain curves have been measured at low operating temperatures using impact hammer-based tensile tests with cooling chamber. The fabricated SAC lead-free solder specimen was isothermally aged up to 6 months at 50 °C before testing. Anand viscoplastic model has been used to compute nine Anand parameters to describe the material constitutive behavior. Anand Model parameters evolution due to thermal aging has been studied for SAC solders. The computed nine Anand parameters from experimental data then were used to simulate the tensile test to predict the stress–strain curve and compared to experimental stress–strain curves to verify the accuracy of the model. A good correlation was found between experimental data and Anand-predicted data.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • aging
  • size-exclusion chromatography
  • aging
  • Bismuth