Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kim, Sunjung

  • Google
  • 2
  • 6
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Influence of Porosity on Fracture Toughness and Fracture Behavior of Antibiotic-Loaded PMMA Bone Cement8citations
  • 2014Properties of cement-sand based piezoelectric compositescitations

Places of action

Chart of shared publication
Ploeg, Heidi-Lynn
1 / 3 shared
Rudraraju, Shiva
1 / 2 shared
Baril, Caroline
1 / 1 shared
Abens, Conner
1 / 1 shared
Braden, Joel
1 / 1 shared
Zhao, Ping
1 / 2 shared
Chart of publication period
2022
2014

Co-Authors (by relevance)

  • Ploeg, Heidi-Lynn
  • Rudraraju, Shiva
  • Baril, Caroline
  • Abens, Conner
  • Braden, Joel
  • Zhao, Ping
OrganizationsLocationPeople

article

Influence of Porosity on Fracture Toughness and Fracture Behavior of Antibiotic-Loaded PMMA Bone Cement

  • Kim, Sunjung
  • Ploeg, Heidi-Lynn
  • Rudraraju, Shiva
  • Baril, Caroline
Abstract

<jats:title>Abstract</jats:title><jats:p>Aseptic loosening is the most common reason for the long-term revision of cemented arthroplasties with fracture of the cement being a postulated cause or contributing factor. In our previous studies we showed that adding an antibiotic to a polymethylmethacrylate (PMMA) bone cement led to detrimental effects on various mechanical properties of the cement such as bending strength, compressive strength and fracture toughness (KIC). This finding implied that the mechanical failure of antibiotic-loaded PMMA bone cement was influenced by its pore volume fraction. Up to now this aspect has not been studied. Hence the purposes of this study were to determine (1) the influence of antibiotic (telavancin) loading on the KIC of a widely used PMMA bone cement brand (Palacos®R) and (2) the influence of pore size and pore distribution on the fracture behavior of the KIC specimens. For (2) both experimental and numerical methods (extended finite element method [XFEM]) were used allowing a comparison between the two sets of results. We found that: (1) KIC decreased with increased porosity with the drop (relative to the value for the control cement) being significant when the telavancin loading was 4.8 wt/wt % (2 g of telavancin added to 40 g of control cement powder); (2) there was a critical pore size above which there was a significant decrease in KIC and is 1 mm; (3) crack propagation was strongly influenced by pore size and pore locations (pore–pore interactions); and, (4) there was good agreement between the experimental and XFEM results. The implications of these findings for the use of a telavancin-loaded PMMA bone cement in cemented total joint arthroplasties are commented upon.</jats:p>

Topics
  • impedance spectroscopy
  • pore
  • crack
  • strength
  • cement
  • porosity
  • fracture behavior
  • fracture toughness