Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jones, Casey M.

  • Google
  • 1
  • 2
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Overdischarge Detection and Prevention With Temperature Monitoring of Li-Ion Batteries and Linear Regression-Based Machine Learning10citations

Places of action

Chart of shared publication
Tomar, Vikas
1 / 3 shared
Li, Bing
1 / 9 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Tomar, Vikas
  • Li, Bing
OrganizationsLocationPeople

article

Overdischarge Detection and Prevention With Temperature Monitoring of Li-Ion Batteries and Linear Regression-Based Machine Learning

  • Tomar, Vikas
  • Li, Bing
  • Jones, Casey M.
Abstract

<jats:title>Abstract</jats:title><jats:p>This work focuses on the use of linear regression analysis-based machine learning for the prediction of the end of discharge of a prismatic Li-ion cell. The cell temperature was recorded during the cycling of Li-ion cells and the relation between the open circuit voltage (OCV) and cell temperature was used in the development of the linear regression-based machine learning algorithm. The peak temperature was selected as the indicator of battery end of discharge. A battery management system (BMS) using a pyboard microcontroller was constructed to monitor the temperature of the cell under test and was also used to control a MOSFET that acted as a switch to disconnect the cell from the circuit. The method used an initial 10 charge and discharge cycles at a rate of 1C as the training data, then another charge and discharge cycle for the testing data. During the test cycling, the discharge was continued beyond the cutoff voltage to initiate an overdischarge while the temperature of the cell was continuously monitored. When the temperature of the cell exceeded the predetermined threshold, the pyboard triggered the MOSFET to disconnect the cell and stop the overdischarge. The experiment was performed on three different cells, and the overdischarge for each was secured within 0.1 V of the cutoff voltage. The results of these experiments show that a linear regression-based analysis can be implemented to detect an overdischarge condition of a cell based on the anticipated peak temperature during discharge.</jats:p>

Topics
  • experiment
  • machine learning