Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fukac, Rostilav

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Simulation of the Super Critical Water Loop Using ATHLET Code During an Abnormal Scenariocitations

Places of action

Chart of shared publication
Mazzini, Guido
1 / 2 shared
Musa, Alis
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Mazzini, Guido
  • Musa, Alis
OrganizationsLocationPeople

article

Simulation of the Super Critical Water Loop Using ATHLET Code During an Abnormal Scenario

  • Fukac, Rostilav
  • Mazzini, Guido
  • Musa, Alis
Abstract

<jats:title>Abstract</jats:title><jats:p>Supercritical water (SCW) has advantages like high thermal efficiency and can operate at high temperature and pressure. At the same time, however, these properties bring up related issues, such as material compatibility and corrosion resistance. In an effort to fully investigate the operating conditions, and solutions to these issues, test facilities are being built by many research organizations. One such organization, the Research Center Řež (CVR) located in the Czech Republic, has developed an experimental supercritical water loop (SCWL). The purpose of this loop is to provide experimental data from material testing in various conditions, including operating under the neutron field. This will be achieved by inserting a test channel into the existing experimental reactor light water reactor 15 (LVR-15), which will require a license from the state nuclear regulator (State Office for Nuclear Safety (SUJB)). Part of the licensing documentation is the safety analysis, which combines results from developed models using the thermohydraulic code ATHLET 3.1 A patch 1, as well as the experimental out of pile data. Among the postulated scenarios, an abnormal sequence (labeled A2—Loss of power in the loop) was analyzed in order to provide a preliminary benchmark. This scenario is similar to the postulated in-pile A2 and it was used for the benchmark activity. The aim of this paper is to present this activity including the adopted assumptions in the model. In particular, the paper presents, how these assumptions influenced the results indicating the discrepancies obtained in the first part of the transient.</jats:p>

Topics
  • impedance spectroscopy
  • corrosion
  • simulation