Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nakano, Shizuka

  • Google
  • 1
  • 2
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Evolution of Strain State of a Rolled Aluminum Sheet in Multi-Pass Conventional Spinning6citations

Places of action

Chart of shared publication
Kajino, Satoshi
1 / 4 shared
Arai, Hirohiko
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Kajino, Satoshi
  • Arai, Hirohiko
OrganizationsLocationPeople

article

Evolution of Strain State of a Rolled Aluminum Sheet in Multi-Pass Conventional Spinning

  • Kajino, Satoshi
  • Arai, Hirohiko
  • Nakano, Shizuka
Abstract

<jats:title>Abstract</jats:title><jats:p>This study clarified the strain state evolution of a cylindrical cup spun from a rolled aluminum sheet in 13 passes. Measurements of radial (ɛr), circumferential (ɛθ), and thickness (ɛt) directional strains as well as forming forces revealed that the strain state evolved as follows: the cup-wall exhibits ɛr &amp;lt; 0 and small |ɛθ| and |ɛt| in early passes and ɛr &amp;gt; 0, ɛθ &amp;lt; 0, and ɛt &amp;lt; 0 in later passes; meanwhile, the cup-edge exhibits ɛr &amp;gt; 0 and small |ɛθ| and |ɛt| in early passes and ɛr &amp;gt; 0, ɛθ &amp;lt; 0, and ɛt &amp;gt; 0 in later passes. The relationship between the strain states and the forming force is interpreted as follows. The normal direction forming force, which pushes into the workpiece in the thickness direction, primarily deforms the workpieces. The radial direction forming force, toward the edge along the workpiece configuration, facilitates elongation in the radial direction of the cup-wall and results in ɛr &amp;gt; 0 during spinning. By contrast, a small radial direction forming force or a forming force whose direction is inverse against the roller movement direction restrains to elongate the material in the radial direction and facilitates shrinkage, thereby resulting in ɛr &amp;lt; 0 in the cup-edge in early passes. Furthermore, the small or inverse directional force facilitates the accumulation of the material to the edge and results in ɛt &amp;gt; 0 in latter passes.</jats:p>

Topics
  • impedance spectroscopy
  • aluminium
  • positron annihilation lifetime spectroscopy
  • Photoacoustic spectroscopy
  • spinning