Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Negi, Seema

  • Google
  • 1
  • 4
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021A Comprehensive Study of Auxiliary Arrangements for Attaining Omnidirectionality in Additive Manufacturing Machine Tools4citations

Places of action

Chart of shared publication
Kapil, Sajan
1 / 2 shared
Das, Manas
1 / 2 shared
Singh, Ambrish
1 / 1 shared
Karunakaran, K. P.
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Kapil, Sajan
  • Das, Manas
  • Singh, Ambrish
  • Karunakaran, K. P.
OrganizationsLocationPeople

article

A Comprehensive Study of Auxiliary Arrangements for Attaining Omnidirectionality in Additive Manufacturing Machine Tools

  • Negi, Seema
  • Kapil, Sajan
  • Das, Manas
  • Singh, Ambrish
  • Karunakaran, K. P.
Abstract

<jats:title>Abstract</jats:title><jats:p>Anisotropy and omnidirectionality are the two most significant impediments to the growth of additive manufacturing (AM). While anisotropy is a property of the part, omnidirectionality is a characteristic of the machine tool. Omnidirectionality, implying invariance in AM processes with the goal of minimizing variations in material and geometric properties of the as-built parts, is often ignored during systems and process design. Disregard to directional sensitivity, which in some cases are inherent to the process (and/ or system), inadvertently changes the process parameter in-situ consequently, producing parts with non-uniform and often erratic properties. AM, attributing to its sheer number of processing variables, is especially susceptible to this subtle, yet significant system property. While some AM platforms, due to their nature of part production, are inherently omnidirectional, others require additional setup to ensure the same. Having an omnidirectional AM platform ensures that the parts are fabricated with process variables that are equally sensitive in all directions. In most AM systems, given a fixed set of process parameters, the spatial orientation of fusion (or joining) source vector, feedstock-delivery vector, and travel direction vector relative to each other governs omnidirectionality. Inconsistency or change in orientation of these three vectors results in non-uniform part properties and variations in geometric dimensions. Therefore, AM systems have to be omnidirectional to improve part performance and promote industrial acceptance. This paper, through a formal definition of omnidirectionality, analyses these three vectors individually along with their interplay with other process parameters and design variables.</jats:p>

Topics
  • impedance spectroscopy
  • additive manufacturing
  • joining