Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Borgohain, A.

  • Google
  • 1
  • 9
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Preparation and Characterization of Nb-1Zr-0.1C Alloy Suitable for Liquid Metal Coolant Channels of High Temperature Reactors3citations

Places of action

Chart of shared publication
Krishnan, Madangopal
1 / 2 shared
Kishor, J.
1 / 2 shared
Majumdar, S.
1 / 25 shared
Dey, G. K.
1 / 6 shared
Tewari, R.
1 / 4 shared
Kain, V.
1 / 12 shared
Kapoor, R.
1 / 1 shared
Vishwanadh, B.
1 / 5 shared
Banerjee, S.
1 / 11 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Krishnan, Madangopal
  • Kishor, J.
  • Majumdar, S.
  • Dey, G. K.
  • Tewari, R.
  • Kain, V.
  • Kapoor, R.
  • Vishwanadh, B.
  • Banerjee, S.
OrganizationsLocationPeople

article

Preparation and Characterization of Nb-1Zr-0.1C Alloy Suitable for Liquid Metal Coolant Channels of High Temperature Reactors

  • Krishnan, Madangopal
  • Kishor, J.
  • Majumdar, S.
  • Borgohain, A.
  • Dey, G. K.
  • Tewari, R.
  • Kain, V.
  • Kapoor, R.
  • Vishwanadh, B.
  • Banerjee, S.
Abstract

<jats:title>Abstract</jats:title><jats:p>A novel process comprising of aluminothermic coreduction of mixed oxides followed by arc and electron beam melt refining was developed for preparation of Nb-1Zr-0.1C alloy. The parameters of the process were optimized by considering the thermodynamic (heat) and mass balance phenomenon. The ingots of the homogenized alloy produced after electron beam melt consolidation were further extruded into tubes. The alloy was vacuum annealed at 1350–1800 °C to study the stability of Nb2C and Nb(Zr)C carbide precipitates in the microstructure. Compression creep tests conducted at 900 and 1000 °C revealed a stress exponent value of 2 and activation energy of 508 kJ/mol. NbSi2-based coatings were developed on the Nb-1Zr-0.1C alloy tubes using pack siliconizing process. The coated alloy was tested for oxidation at 1250 °C, and corrosion in liquid lead-bismuth eutectic (LBE) alloy at 875 °C for prolonged duration. The silicide-coated alloy showed superior oxidation and LBE corrosion resistance at high temperatures. The alloy was found to be a promising material for coolant channels of high temperature reactors.</jats:p>

Topics
  • corrosion
  • melt
  • carbide
  • precipitate
  • activation
  • creep
  • creep test
  • Bismuth
  • silicide