Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Narangaparambil, Jinesh

  • Google
  • 3
  • 7
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Process-Recipe Development for Printing of Multilayer Circuitry With <i>Z</i>-Axis Interconnects Using Aerosol-Jet Printed Dielectric Vias1citations
  • 2020Acceleration Factor Modeling of Flexible Electronic Substrates From Actual Human Body Measurementscitations
  • 2020Flexure and Twist Test Reliability Assurance of Flexible Electronics2citations

Places of action

Chart of shared publication
Soni, Ved
1 / 2 shared
Lall, Pradeep
3 / 19 shared
Miller, Scott
2 / 6 shared
Liu, Wei
1 / 20 shared
Yadav, Vikas
1 / 3 shared
Thomas, Tony
1 / 5 shared
Leever, Ben
1 / 1 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Soni, Ved
  • Lall, Pradeep
  • Miller, Scott
  • Liu, Wei
  • Yadav, Vikas
  • Thomas, Tony
  • Leever, Ben
OrganizationsLocationPeople

article

Flexure and Twist Test Reliability Assurance of Flexible Electronics

  • Narangaparambil, Jinesh
  • Leever, Ben
  • Lall, Pradeep
  • Miller, Scott
Abstract

<jats:title>Abstract</jats:title><jats:p>Additively printed flexible electronics in wearable application may be subjected to twisting or flexing depending on the form factor and the intended use. There is a dearth of standards for testing and reliability assurance of flexible electronics and reliability data for various use conditions. In this paper, a test protocol has been developed for twisting and flexing on aerosol-jet additively printed flexible circuits. Test patterns with commonly used traces geometries have been developed, aerosol-jet printed, and thermally sintered at various conditions. Effect of sintering temperature on fatigue robustness in cyclic-flexing and cyclic-twisting has been studied for straight, horse-shoe, and zig-zag trace geometries. Reliability data have been acquired under both twist and flex using continuous resistance monitoring until 100,000 cycles. Failure mechanisms have been studied for both cyclic-flexure and cyclic-twist using scanning electron microscopy (SEM) and optical imaging.</jats:p>

Topics
  • impedance spectroscopy
  • scanning electron microscopy
  • fatigue
  • sintering