Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chava, Sandeep

  • Google
  • 1
  • 1
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021In Situ Investigation of the Kinematics of Ply Interfaces During Composite Manufacturing9citations

Places of action

Chart of shared publication
Namilae, Sirish
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Namilae, Sirish
OrganizationsLocationPeople

article

In Situ Investigation of the Kinematics of Ply Interfaces During Composite Manufacturing

  • Namilae, Sirish
  • Chava, Sandeep
Abstract

<jats:title>Abstract</jats:title><jats:p>The kinematics of composite ply interfaces critically affects both the manufacturing processes and deformation mechanisms and is often responsible for the formation of defects such as wrinkles and delamination. In the present work, processing-induced defects in a carbon fiber prepreg composite are evaluated by devising a novel in situ experimental approach. Carbon fiber prepreg laminates are cured in a specially designed autoclave with viewports with plies laid up on a mold with cylindrical tooling set up to maximize the ply-movement. Four-ply layup orientations of [90/90]s, [90/0]s, [90/45]s, and [90/−45]s and three-mold configurations with cylindrical tools of diameter 9.5 mm (3/8 in.), 12.7 mm (1/2 in.), and 15.9 mm (5/8 in.) are used for the parametric study. Strains, ply-movement, and formation of defects are observed in situ using digital image correlation (DIC) during the autoclave cure cycle, through the viewports. The processing-induced defects in the composite are further characterized by X-ray micro-computed tomography (micro-CT). We observed that the mold with the larger radius of curvature (15.9 mm cylinder) leads to higher strains in both in-plane directions and higher displacement in out of plane directions. The maximum average out-of-plane ply movement, as well as the largest wrinkle, are observed for [90/−45]s layup on the mold with the highest radius of curvature.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • tomography
  • composite
  • defect
  • deformation mechanism