Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wilde, Y. De

  • Google
  • 1
  • 4
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Thermal Exchange of Glass Micro-Fibers Measured by the 3ω Technique9citations

Places of action

Chart of shared publication
Doumouro, J.
1 / 2 shared
Bourgeois, Olivier
1 / 13 shared
Nguyen, Tuyen Duc D.
1 / 1 shared
Richard, Jacques
1 / 7 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Doumouro, J.
  • Bourgeois, Olivier
  • Nguyen, Tuyen Duc D.
  • Richard, Jacques
OrganizationsLocationPeople

article

Thermal Exchange of Glass Micro-Fibers Measured by the 3ω Technique

  • Doumouro, J.
  • Bourgeois, Olivier
  • Wilde, Y. De
  • Nguyen, Tuyen Duc D.
  • Richard, Jacques
Abstract

In this work, we propose an experimental setup to measure the thermal conductivity and specific heat of a single suspended glass fiber, as well as the thermal contact resistance between two glass fibers. By using optical lithography, wet and dry etching and thin film deposition, we prepared suspended glass fibers that are coated by niobium nitride thin film (NbN) used as room temperature thermal transducer. By using the 3ω technique, the thermal conductivity of glass fiber was measured to be 1.1 W.m −1 .K −1 and specific heat 0.79 J.g −1 .K −1 around 300 K under vacuum conditions. By introducing exchange gas into the measurement chamber, influence of the gas on the heat transfer was studied, and the convection coefficient h for all the measurement ranges from a pressure of 0.01 hPa to 1000 hPa, over more than five orders of magnitude, has been obtained. By adding a bridging glass fiber on top of two other suspended glass fibers, it was possible to estimate the thermal contact resistance between two glass fibers R c in the range of 10 7 K.W −1 to 10 8 K.W −1 .

Topics
  • Deposition
  • thin film
  • glass
  • glass
  • nitride
  • thermal conductivity
  • lithography
  • niobium
  • specific heat
  • dry etching