Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mehta, Vishal

  • Google
  • 3
  • 5
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2022Effects of stacking sequences and longitudinal parameter on the dynamic characteristics of multilayer glass epoxy composite1citations
  • 2022High Strain Rate Mechanical Properties of SAC-Q Solder for Extreme Temperatures After Exposure to Isothermal Aging Up to 90 Days18citations
  • 2020High Strain Rate Mechanical Properties of SAC-Q With Sustained Elevated Temperature Storage at 100 °C9citations

Places of action

Chart of shared publication
Desai, Saumil
1 / 1 shared
Lall, Pradeep
2 / 19 shared
Suhling, Jeff
2 / 7 shared
Blecker, Ken
1 / 1 shared
Locker, David
1 / 4 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Desai, Saumil
  • Lall, Pradeep
  • Suhling, Jeff
  • Blecker, Ken
  • Locker, David
OrganizationsLocationPeople

article

High Strain Rate Mechanical Properties of SAC-Q With Sustained Elevated Temperature Storage at 100 °C

  • Locker, David
  • Lall, Pradeep
  • Mehta, Vishal
  • Suhling, Jeff
Abstract

<jats:title>Abstract</jats:title><jats:p>Leadfree electronics in harsh environments often may be exposed to elevated temperature for the duration of storage, transport, and usage in addition to high strain rate triggering loads during drop-impact, vibration, and shock. These electronic components may get exposed to high strain rates of 1 to 100 s−1 and operating temperatures up to 200 °C in critical surroundings. Doped SAC solder alloys such as SAC-Q are being considered for use in fine-pitch electronic components. SAC-Q consists of Sn-Ag-Cu alloy in addition to Bi (SAC+Bi). Prior data presented to date for lead-free solders, such as SAC-Q alloy, at high aging temperature and high strain rate are for 50 °C sustained exposure. In this paper, the effect of sustained exposure to temperature of 100 °C on high strain rate properties of SAC-Q is studied. Thermally aged SAC-Q samples at 100 °C have been tested at a range of strain rates including 10, 35, 50, and 75 s−1 and operating temperatures ranging from 25 °C up to 200 °C. Stress–strain curves are established for the given range of strain rates and operating temperatures. Also, the computed experimental results and data have been fitted to the Anand viscoplasticity model for SAC-Q for comparison.</jats:p>

Topics
  • impedance spectroscopy
  • aging
  • aging