Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Coleman, John

  • Google
  • 2
  • 13
  • 34

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Sensitivity of Thermal Predictions to Uncertain Surface Tension Data in Laser Additive Manufacturing31citations
  • 2019Uncertainty Propagation Through a Simulation of Industrial High Pressure Die Casting3citations

Places of action

Chart of shared publication
Heigel, J.
1 / 1 shared
Ricker, R. E.
1 / 1 shared
Levine, L.
1 / 1 shared
Raghavan, N.
1 / 2 shared
Babu, S. S.
1 / 12 shared
Plotkowski, A.
1 / 2 shared
Stump, B.
1 / 3 shared
Sabau, A. S.
1 / 1 shared
Krane, M. J. M.
1 / 2 shared
Fu, Jiahong
1 / 1 shared
Poole, Gregory
1 / 1 shared
Krane, Matthew John M.
1 / 1 shared
Marconnet, Amy
1 / 2 shared
Chart of publication period
2020
2019

Co-Authors (by relevance)

  • Heigel, J.
  • Ricker, R. E.
  • Levine, L.
  • Raghavan, N.
  • Babu, S. S.
  • Plotkowski, A.
  • Stump, B.
  • Sabau, A. S.
  • Krane, M. J. M.
  • Fu, Jiahong
  • Poole, Gregory
  • Krane, Matthew John M.
  • Marconnet, Amy
OrganizationsLocationPeople

article

Uncertainty Propagation Through a Simulation of Industrial High Pressure Die Casting

  • Fu, Jiahong
  • Poole, Gregory
  • Coleman, John
  • Krane, Matthew John M.
  • Marconnet, Amy
Abstract

<jats:title>Abstract</jats:title><jats:p>While numerical models are often used in industry to evaluate the transport phenomena in solidification processes, the uncertainty in the results propagated from uncertain input parameters is rarely considered. In this work, in order to investigate the effects of input uncertainty on the outputs of high pressure die casting (HPDC) simulations, the Center for Prediction of Reliability, Integrity, and Survivability of Microsystems (PRISM) uncertainty quantification (PUQ) framework was applied. Three uncertainty propagation trials investigate the impact of uncertainty in metal material properties, thermal boundary conditions, and a modeling parameter on outputs of interest, such as fraction liquid at different times in the process cycle and shrinkage porosity volume, in an industrial A380 aluminum alloy HPDC process. This quantification of the output uncertainty establishes the reliability of the simulation results and can inform process design choices, such as the determination of the part ejection time. The results are most sensitive to the uncertainty in the interfacial heat transfer (for both outputs of interest) and the feeding effectivity (FE) (a model parameter controlling porosity formation determination), while the other heat transfer boundary conditions, model parameters, and all the properties play a secondary role in output uncertainty.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • aluminium
  • porosity
  • interfacial
  • solidification
  • die casting