People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mohan, Anita
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Enhancement of Multiferroic and Optical Properties in BiFeO<sub>3</sub> Due to Different Exchange Interactions Between Transition and Rare Earth Ionscitations
- 2019Effect of Prehot Corrosion on Erosion Behavior of High Chromium Ferritic Steel for Heat Exchangerscitations
- 2017A Study on Mechanical Properties and Strengthening Mechanisms of AA5052/ZrB2 In Situ Compositescitations
- 2017High-Temperature Tribology of AA5052/ZrB2 PAMCscitations
- 2016Wear and Friction of AA5052-Al3Zr In Situ Composites Synthesized by Direct Melt Reactioncitations
- 2016Strengthening mechanisms of (Al<sub>3</sub>Zr<sub>mp</sub> + ZrB<sub>2np</sub>)/AA5052 hybrid compositescitations
- 2012Fabrication and Characterisation of Al-Al<sub>2</sub>O<sub>3</sub> Composite by Mechanical Alloyingcitations
Places of action
Organizations | Location | People |
---|
article
Effect of Prehot Corrosion on Erosion Behavior of High Chromium Ferritic Steel for Heat Exchangers
Abstract
<jats:p>This study presents the prehot corrosion effect on erosion behavior of AISI 446 SS in simulated heat exchanger environment at elevated temperature. Samples were spray deposited using two salt mixture (Na2SO4/NaCl). Subsequently, low-temperature hot corrosion tests were carried out at 550, 650, and 750 °C for 20 h. Chlorination followed by sulfidation was mainly responsible for the passive layer formation during the process of hot corrosion. The prehot corroded samples were subjected to air-jet erosion test using alumina as the erodent, at impact velocity of 100 m/s and flux rate of 4.2 g/min, with variable impingement angles of 30 deg, 60 deg, and 90 deg. The passive layer formed during corrosion underwent detachment of metallic flakes through cracking during the impact of erodent, and was responsible for a significant change in erosion rate. Cutting, plowing, lip formation, and particle embedment were identified as the operative mechanisms during erosion.</jats:p>