Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Van Gerner, Henk Jan

  • Google
  • 2
  • 2
  • 20

Netherlands Leprosy Relief

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Experimental investigation of a flat-plate closed-loop pulsating heat pipe17citations
  • 2017An experimental study towards the practical application of closed-loop flat-plate pulsating heat pipes3citations

Places of action

Chart of shared publication
Groeneveld, Gerben
2 / 2 shared
Wits, Wessel
2 / 15 shared
Chart of publication period
2019
2017

Co-Authors (by relevance)

  • Groeneveld, Gerben
  • Wits, Wessel
OrganizationsLocationPeople

article

Experimental investigation of a flat-plate closed-loop pulsating heat pipe

  • Van Gerner, Henk Jan
  • Groeneveld, Gerben
  • Wits, Wessel
Abstract

<p>The thermal performance and operating modi of a flat-plate closed-loop pulsating heat pipe (PHP) are experimentally observed. The PHP is manufactured through computer numerical controlled milling and vacuum brazing of stainless steel 316 L. Next to a plain closed-loop PHP, also one that promotes fluid circulation through passive Tesla-type valves was developed. Each channel has a 2 * 2 mm<sup>2</sup> square cross section, and in total, 12 parallel channels fit within the 50 * 200 mm<sup>2</sup> effective area. During the experimental investigation, the power input was increased from 20 W to 100 W, while cooling was performed using a thermo-electric cooler (TEC) and thermostat bath. Three working fluids were assessed: water, methanol, and ammonia. The PHP was charged with a 40% filling ratio. Thermal resistances were obtained for different inclination angles. It was observed that the PHP operates well in vertical evaporator-down orientation but not horizontally. Moreover, experiments show that the minimum operating orientation is between 15 and 30 deg. Two operating modi are observed, namely, the thermosyphon modus, without excessive fluctuations, and the pulsating modus, in which both the temperature and pressure responses oscillate frequently and violently. Overall thermal resistances were determined as low as 0.15 K/W (ammonia) up to 0.28 and 0.48 K/W (water and methanol, respectively) at a power input of 100 W in the vertical evaporator-down orientation. Infrared thermography was used to visualize the working fluid behavior within the PHPs. Infrared observations correlated well with temperature and pressure measurements. The experimental results demonstrated that the developed flat-plate PHP design, suitable for high-volume production, is a promising candidate for electronics cooling applications.</p>

Topics
  • impedance spectroscopy
  • stainless steel
  • experiment
  • grinding
  • milling
  • thermography