Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nagarajan, Hari Prashanth Narayan

  • Google
  • 1
  • 8
  • 71

VTT Technical Research Centre of Finland

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Knowledge-based optimization of artificial neural network topology for additive manufacturing process modeling: a case study for fused deposition modeling71citations

Places of action

Chart of shared publication
Coatanea, Eric
1 / 6 shared
Hamedi, Azarakhsh
1 / 3 shared
Jafarian, Hesam
1 / 3 shared
Dimassi, Saoussen
1 / 4 shared
Mokhtarian, Hossein
1 / 12 shared
Wang, G. Gary
1 / 2 shared
Balani, Shahriar Bakrani
1 / 3 shared
Haapala Kari, R.
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Coatanea, Eric
  • Hamedi, Azarakhsh
  • Jafarian, Hesam
  • Dimassi, Saoussen
  • Mokhtarian, Hossein
  • Wang, G. Gary
  • Balani, Shahriar Bakrani
  • Haapala Kari, R.
OrganizationsLocationPeople

article

Knowledge-based optimization of artificial neural network topology for additive manufacturing process modeling: a case study for fused deposition modeling

  • Coatanea, Eric
  • Hamedi, Azarakhsh
  • Nagarajan, Hari Prashanth Narayan
  • Jafarian, Hesam
  • Dimassi, Saoussen
  • Mokhtarian, Hossein
  • Wang, G. Gary
  • Balani, Shahriar Bakrani
  • Haapala Kari, R.
Abstract

Additive manufacturing (AM) continues to rise in popularity due to its various advantages over traditional manufacturing processes. AM interests industry, but achieving repeatable production quality remains problematic for many AM technologies. Thus, modeling the different process variables in AM using modeling techniques, such as, machine learning, can be highly beneficial in creating useful knowledge of the process. Such developed artificial neural network models would aid designers and manufacturers to make informed decisions about their products and processes.However, accurately defining an artificial neural network topology is challenging due to the need to integrate AM system behavior during modeling. Towards that goal, an approach combining dimensional analysis conceptual modeling (DACM), experimental sampling, factors selection, and modeling based on Knowledge-Based Artificial Neural Network (KB-ANN) is proposed. This approach integrates existing literature and expert knowledge of the AM process to implement system behavior centered topology optimization of the knowledge-based artificial neural network model. The usefulness of the method is demonstrated using a case study to model wall thickness, height of part, and total mass of the part in a Fused Deposition Modeling (FDM) process. The KB-ANN based model for FDM has better performance and generalization model with low mean squared error in comparison to a conventional ANN.

Topics
  • Deposition
  • impedance spectroscopy
  • additive manufacturing
  • machine learning